How to make a graph with multiple axes (dual y-axis plots, plots with secondary axes) in python.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
In [1]:
import plotly.graph_objects as go from plotly.subplots import make_subplots # Create figure with secondary y-axis fig = make_subplots(specs=[[{"secondary_y": True}]]) # Add traces fig.add_trace( go.Scatter(x=[1, 2, 3], y=[40, 50, 60], name="yaxis data"), secondary_y=False, ) fig.add_trace( go.Scatter(x=[2, 3, 4], y=[4, 5, 6], name="yaxis2 data"), secondary_y=True, ) # Add figure title fig.update_layout( title_text="Double Y Axis Example" ) # Set x-axis title fig.update_xaxes(title_text="xaxis title") # Set y-axes titles fig.update_yaxes(title_text="<b>primary</b> yaxis title", secondary_y=False) fig.update_yaxes(title_text="<b>secondary</b> yaxis title", secondary_y=True) fig.show()Multiple axes in Dash¶
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
Multiple Y-Axes Subplots¶In [3]:
import plotly.graph_objects as go from plotly.subplots import make_subplots fig = make_subplots(rows=2, cols=2, specs=[[{"secondary_y": True}, {"secondary_y": True}], [{"secondary_y": True}, {"secondary_y": True}]]) # Top left fig.add_trace( go.Scatter(x=[1, 2, 3], y=[2, 52, 62], name="yaxis data"), row=1, col=1, secondary_y=False) fig.add_trace( go.Scatter(x=[1, 2, 3], y=[40, 50, 60], name="yaxis2 data"), row=1, col=1, secondary_y=True, ) # Top right fig.add_trace( go.Scatter(x=[1, 2, 3], y=[2, 52, 62], name="yaxis3 data"), row=1, col=2, secondary_y=False, ) fig.add_trace( go.Scatter(x=[1, 2, 3], y=[40, 50, 60], name="yaxis4 data"), row=1, col=2, secondary_y=True, ) # Bottom left fig.add_trace( go.Scatter(x=[1, 2, 3], y=[2, 52, 62], name="yaxis5 data"), row=2, col=1, secondary_y=False, ) fig.add_trace( go.Scatter(x=[1, 2, 3], y=[40, 50, 60], name="yaxis6 data"), row=2, col=1, secondary_y=True, ) # Bottom right fig.add_trace( go.Scatter(x=[1, 2, 3], y=[2, 52, 62], name="yaxis7 data"), row=2, col=2, secondary_y=False, ) fig.add_trace( go.Scatter(x=[1, 2, 3], y=[40, 50, 60], name="yaxis8 data"), row=2, col=2, secondary_y=True, ) fig.show()Multiple Axes¶
Low-level API for creating a figure with multiple axes
In [4]:
import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Scatter( x=[1, 2, 3], y=[4, 5, 6], name="yaxis1 data" )) fig.add_trace(go.Scatter( x=[2, 3, 4], y=[40, 50, 60], name="yaxis2 data", yaxis="y2" )) fig.add_trace(go.Scatter( x=[4, 5, 6], y=[40000, 50000, 60000], name="yaxis3 data", yaxis="y3" )) fig.add_trace(go.Scatter( x=[5, 6, 7], y=[400000, 500000, 600000], name="yaxis4 data", yaxis="y4" )) # Create axis objects fig.update_layout( xaxis=dict( domain=[0.3, 0.7] ), yaxis=dict( title=dict( text="yaxis title", font=dict( color="#1f77b4" ) ), ), yaxis2=dict( title=dict( text="yaxis2 title", font=dict( color="#ff7f0e" ) ), anchor="free", overlaying="y", side="left", position=0.15 ), yaxis3=dict( title=dict( text="yaxis3 title", font=dict( color="#d62728" ) ), anchor="x", overlaying="y", side="right" ), yaxis4=dict( title=dict( text="yaxis4 title", font=dict( color="#9467bd" ) ), anchor="free", overlaying="y", side="right", position=0.85 ) ) # Update layout properties fig.update_layout( title_text="multiple y-axes example", width=800, ) fig.show()Automatically Shifting Axes¶
New in 5.12
To automatically reposition axes to avoid overlap with other axes with the same overlaying
value, set autoshift=True
. For autoshift
to work on an axis, you'll also need to set anchor="free"
on that axis.
In [5]:
import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6], name="yaxis data")) fig.add_trace(go.Scatter(x=[2, 3, 4], y=[40, 50, 60], name="yaxis2 data", yaxis="y2")) fig.add_trace( go.Scatter(x=[4, 5, 6], y=[1000, 2000, 3000], name="yaxis3 data", yaxis="y3") ) fig.add_trace( go.Scatter(x=[3, 4, 5], y=[400, 500, 600], name="yaxis4 data", yaxis="y4") ) fig.update_layout( xaxis=dict( domain=[0.25, 0.75] ), yaxis=dict( title=dict( text="yaxis title" ) ), yaxis2=dict( title=dict( text="yaxis2 title" ), overlaying="y", side="right" ), yaxis3=dict( title=dict( text="yaxis3 title" ), anchor="free", overlaying="y", autoshift=True ), yaxis4=dict( title=dict( text="yaxis4 title" ), anchor="free", overlaying="y", autoshift=True ), ) fig.update_layout( title_text="Shifting y-axes with autoshift", ) fig.show()Shift Axes by a Specific Number of Pixels¶
New in 5.12
Set a shift
value on an axis to shift an axis by that number of pixels. A positive value shifts an axis to the right. A negative value shifts it to the left. Here, we shift yaxis4
100 pixels further to the left.
In [6]:
import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6], name="yaxis data")) fig.add_trace(go.Scatter(x=[2, 3, 4], y=[40, 50, 60], name="yaxis2 data", yaxis="y2")) fig.add_trace( go.Scatter(x=[4, 5, 6], y=[1000, 2000, 3000], name="yaxis3 data", yaxis="y3") ) fig.add_trace( go.Scatter(x=[3, 4, 5], y=[400, 500, 600], name="yaxis4 data", yaxis="y4") ) fig.update_layout( xaxis=dict( domain=[0.25, 0.75] ), yaxis=dict( title=dict( text="yaxis title" ) ), yaxis2=dict( title=dict( text="yaxis2 title" ), overlaying="y", side="right" ), yaxis3=dict( title=dict( text="yaxis3 title" ), anchor="free", overlaying="y", autoshift=True ), yaxis4=dict( title=dict( text="yaxis4 title" ), anchor="free", overlaying="y", autoshift=True, shift=-100 ), ) fig.update_layout( title_text="Shifting y-axes by a specific number of pixels", ) fig.show()
New in 5.13
With overlayed axes, each axis by default has its own number of ticks. You can sync the number of ticks on a cartesian axis with another one it overlays by setting tickmode="sync"
. In this example, we sync the ticks on the "Total bill amount"
axis with the "Total number of diners"
axis that it overlays.
In [7]:
import plotly.graph_objects as go from plotly.data import tips df = tips() summed_values = df.groupby(by="day", as_index=False).sum(numeric_only=True) day_order_mapping = {"Thur": 0, "Fri": 1, "Sat": 2, "Sun": 3} summed_values["order"] = summed_values["day"].apply(lambda day: day_order_mapping[day]) summed_values = summed_values.sort_values(by="order") days_of_week = summed_values["day"].values total_bills = summed_values["total_bill"].values number_of_diners = summed_values["size"].values fig = go.Figure( data=go.Bar( x=days_of_week, y=number_of_diners, name="Total number of diners", marker=dict(color="paleturquoise"), ) ) fig.add_trace( go.Scatter( x=days_of_week, y=total_bills, yaxis="y2", name="Total bill amount", marker=dict(color="crimson"), ) ) fig.update_layout( legend=dict(orientation="h"), yaxis=dict( title=dict(text="Total number of diners"), side="left", range=[0, 250], ), yaxis2=dict( title=dict(text="Total bill amount"), side="right", range=[0, 2000], overlaying="y", tickmode="sync", ), ) fig.show()What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px fig = go.Figure() # or any Plotly Express function e.g. px.bar(...) # fig.add_trace( ... ) # fig.update_layout( ... ) from dash import Dash, dcc, html app = Dash() app.layout = html.Div([ dcc.Graph(figure=fig) ]) app.run(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4