A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pkg.go.dev/math/rand/v2 below:

rand package - math/rand/v2 - Go Packages

Package rand implements pseudo-random number generators suitable for tasks such as simulation, but it should not be used for security-sensitive work.

Random numbers are generated by a Source, usually wrapped in a Rand. Both types should be used by a single goroutine at a time: sharing among multiple goroutines requires some kind of synchronization.

Top-level functions, such as Float64 and Int, are safe for concurrent use by multiple goroutines.

This package's outputs might be easily predictable regardless of how it's seeded. For random numbers suitable for security-sensitive work, see the crypto/rand package.

answers := []string{
	"It is certain",
	"It is decidedly so",
	"Without a doubt",
	"Yes definitely",
	"You may rely on it",
	"As I see it yes",
	"Most likely",
	"Outlook good",
	"Yes",
	"Signs point to yes",
	"Reply hazy try again",
	"Ask again later",
	"Better not tell you now",
	"Cannot predict now",
	"Concentrate and ask again",
	"Don't count on it",
	"My reply is no",
	"My sources say no",
	"Outlook not so good",
	"Very doubtful",
}
fmt.Println("Magic 8-Ball says:", answers[rand.IntN(len(answers))])

This example shows the use of each of the methods on a *Rand. The use of the global functions is the same, without the receiver.

// Create and seed the generator.
// Typically a non-fixed seed should be used, such as Uint64(), Uint64().
// Using a fixed seed will produce the same output on every run.
r := rand.New(rand.NewPCG(1, 2))

// The tabwriter here helps us generate aligned output.
w := tabwriter.NewWriter(os.Stdout, 1, 1, 1, ' ', 0)
defer w.Flush()
show := func(name string, v1, v2, v3 any) {
	fmt.Fprintf(w, "%s\t%v\t%v\t%v\n", name, v1, v2, v3)
}

// Float32 and Float64 values are in [0, 1).
show("Float32", r.Float32(), r.Float32(), r.Float32())
show("Float64", r.Float64(), r.Float64(), r.Float64())

// ExpFloat64 values have an average of 1 but decay exponentially.
show("ExpFloat64", r.ExpFloat64(), r.ExpFloat64(), r.ExpFloat64())

// NormFloat64 values have an average of 0 and a standard deviation of 1.
show("NormFloat64", r.NormFloat64(), r.NormFloat64(), r.NormFloat64())

// Int32, Int64, and Uint32 generate values of the given width.
// The Int method (not shown) is like either Int32 or Int64
// depending on the size of 'int'.
show("Int32", r.Int32(), r.Int32(), r.Int32())
show("Int64", r.Int64(), r.Int64(), r.Int64())
show("Uint32", r.Uint32(), r.Uint32(), r.Uint32())

// IntN, Int32N, and Int64N limit their output to be < n.
// They do so more carefully than using r.Int()%n.
show("IntN(10)", r.IntN(10), r.IntN(10), r.IntN(10))
show("Int32N(10)", r.Int32N(10), r.Int32N(10), r.Int32N(10))
show("Int64N(10)", r.Int64N(10), r.Int64N(10), r.Int64N(10))

// Perm generates a random permutation of the numbers [0, n).
show("Perm", r.Perm(5), r.Perm(5), r.Perm(5))
Output:

Float32     0.95955694          0.8076733            0.8135684
Float64     0.4297927436037299  0.797802349388613    0.3883664855410056
ExpFloat64  0.43463410545541104 0.5513632046504593   0.7426404617374481
NormFloat64 -0.9303318111676635 -0.04750789419852852 0.22248301107582735
Int32       2020777787          260808523            851126509
Int64       5231057920893523323 4257872588489500903  158397175702351138
Uint32      314478343           1418758728           208955345
IntN(10)    6                   2                    0
Int32N(10)  3                   7                    7
Int64N(10)  8                   9                    4
Perm        [0 3 1 4 2]         [4 1 2 0 3]          [4 3 2 0 1]

This section is empty.

This section is empty.

ExpFloat64 returns an exponentially distributed float64 in the range (0, +math.MaxFloat64] with an exponential distribution whose rate parameter (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. To produce a distribution with a different rate parameter, callers can adjust the output using:

sample = ExpFloat64() / desiredRateParameter

Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0) from the default Source.

Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0) from the default Source.

Int returns a non-negative pseudo-random int from the default Source.

Int32 returns a non-negative pseudo-random 31-bit integer as an int32 from the default Source.

Int32N returns, as an int32, a pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n <= 0.

Int64 returns a non-negative pseudo-random 63-bit integer as an int64 from the default Source.

Int64N returns, as an int64, a pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n <= 0.

IntN returns, as an int, a pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n <= 0.

fmt.Println(rand.IntN(100))
fmt.Println(rand.IntN(100))
fmt.Println(rand.IntN(100))
func N[Int intType](n Int) Int

N returns a pseudo-random number in the half-open interval [0,n) from the default Source. The type parameter Int can be any integer type. It panics if n <= 0.

// Print an int64 in the half-open interval [0, 100).
fmt.Println(rand.N(int64(100)))

// Sleep for a random duration between 0 and 100 milliseconds.
time.Sleep(rand.N(100 * time.Millisecond))

NormFloat64 returns a normally distributed float64 in the range [-math.MaxFloat64, +math.MaxFloat64] with standard normal distribution (mean = 0, stddev = 1) from the default Source. To produce a different normal distribution, callers can adjust the output using:

sample = NormFloat64() * desiredStdDev + desiredMean

Perm returns, as a slice of n ints, a pseudo-random permutation of the integers in the half-open interval [0,n) from the default Source.

for _, value := range rand.Perm(3) {
	fmt.Println(value)
}
Output:

1
2
0
func Shuffle(n int, swap func(i, j int))

Shuffle pseudo-randomizes the order of elements using the default Source. n is the number of elements. Shuffle panics if n < 0. swap swaps the elements with indexes i and j.

words := strings.Fields("ink runs from the corners of my mouth")
rand.Shuffle(len(words), func(i, j int) {
	words[i], words[j] = words[j], words[i]
})
fmt.Println(words)
numbers := []byte("12345")
letters := []byte("ABCDE")
// Shuffle numbers, swapping corresponding entries in letters at the same time.
rand.Shuffle(len(numbers), func(i, j int) {
	numbers[i], numbers[j] = numbers[j], numbers[i]
	letters[i], letters[j] = letters[j], letters[i]
})
for i := range numbers {
	fmt.Printf("%c: %c\n", letters[i], numbers[i])
}

Uint returns a pseudo-random uint from the default Source.

Uint32 returns a pseudo-random 32-bit value as a uint32 from the default Source.

Uint32N returns, as a uint32, a pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n == 0.

Uint64 returns a pseudo-random 64-bit value as a uint64 from the default Source.

Uint64N returns, as a uint64, a pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n == 0.

UintN returns, as a uint, a pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n == 0.

A ChaCha8 is a ChaCha8-based cryptographically strong random number generator.

NewChaCha8 returns a new ChaCha8 seeded with the given seed.

Read reads exactly len(p) bytes into p. It always returns len(p) and a nil error.

If calls to Read and Uint64 are interleaved, the order in which bits are returned by the two is undefined, and Read may return bits generated before the last call to Uint64.

Seed resets the ChaCha8 to behave the same way as NewChaCha8(seed).

Uint64 returns a uniformly distributed random uint64 value.

A PCG is a PCG generator with 128 bits of internal state. A zero PCG is equivalent to NewPCG(0, 0).

NewPCG returns a new PCG seeded with the given values.

Seed resets the PCG to behave the same way as NewPCG(seed1, seed2).

Uint64 return a uniformly-distributed random uint64 value.

type Rand

A Rand is a source of random numbers.

New returns a new Rand that uses random values from src to generate other random values.

func (*Rand) ExpFloat64

ExpFloat64 returns an exponentially distributed float64 in the range (0, +math.MaxFloat64] with an exponential distribution whose rate parameter (lambda) is 1 and whose mean is 1/lambda (1). To produce a distribution with a different rate parameter, callers can adjust the output using:

sample = ExpFloat64() / desiredRateParameter
func (*Rand) Float32

Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0).

func (*Rand) Float64

Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0).

func (*Rand) Int

Int returns a non-negative pseudo-random int.

func (*Rand) Int32

Int32 returns a non-negative pseudo-random 31-bit integer as an int32.

func (*Rand) Int32N

Int32N returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n <= 0.

func (*Rand) Int64

Int64 returns a non-negative pseudo-random 63-bit integer as an int64.

func (*Rand) Int64N

Int64N returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n <= 0.

func (*Rand) IntN

IntN returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n <= 0.

func (*Rand) NormFloat64

NormFloat64 returns a normally distributed float64 in the range -math.MaxFloat64 through +math.MaxFloat64 inclusive, with standard normal distribution (mean = 0, stddev = 1). To produce a different normal distribution, callers can adjust the output using:

sample = NormFloat64() * desiredStdDev + desiredMean
func (*Rand) Perm

Perm returns, as a slice of n ints, a pseudo-random permutation of the integers in the half-open interval [0,n).

func (*Rand) Shuffle
func (r *Rand) Shuffle(n int, swap func(i, j int))

Shuffle pseudo-randomizes the order of elements. n is the number of elements. Shuffle panics if n < 0. swap swaps the elements with indexes i and j.

func (*Rand) Uint added in go1.23.0

Uint returns a pseudo-random uint.

func (*Rand) Uint32

Uint32 returns a pseudo-random 32-bit value as a uint32.

func (*Rand) Uint32N

Uint32N returns, as a uint32, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n == 0.

func (*Rand) Uint64

Uint64 returns a pseudo-random 64-bit value as a uint64.

func (*Rand) Uint64N

Uint64N returns, as a uint64, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n == 0.

func (*Rand) UintN

UintN returns, as a uint, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n == 0.

type Source interface {
	Uint64() uint64
}

A Source is a source of uniformly-distributed pseudo-random uint64 values in the range [0, 1<<64).

A Source is not safe for concurrent use by multiple goroutines.

A Zipf generates Zipf distributed variates.

NewZipf returns a Zipf variate generator. The generator generates values k ∈ [0, imax] such that P(k) is proportional to (v + k) ** (-s). Requirements: s > 1 and v >= 1.

Uint64 returns a value drawn from the Zipf distribution described by the Zipf object.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4