A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://peps.python.org/pep-0362/ below:

PEP 362 – Function Signature Object

PEP 362 – Function Signature Object
Author:
Brett Cannon <brett at python.org>, Jiwon Seo <seojiwon at gmail.com>, Yury Selivanov <yury at edgedb.com>, Larry Hastings <larry at hastings.org>
Status:
Final
Type:
Standards Track
Created:
21-Aug-2006
Python-Version:
3.3
Post-History:
04-Jun-2012
Resolution:
Python-Dev message
Table of Contents Abstract

Python has always supported powerful introspection capabilities, including introspecting functions and methods (for the rest of this PEP, “function” refers to both functions and methods). By examining a function object you can fully reconstruct the function’s signature. Unfortunately this information is stored in an inconvenient manner, and is spread across a half-dozen deeply nested attributes.

This PEP proposes a new representation for function signatures. The new representation contains all necessary information about a function and its parameters, and makes introspection easy and straightforward.

However, this object does not replace the existing function metadata, which is used by Python itself to execute those functions. The new metadata object is intended solely to make function introspection easier for Python programmers.

Signature Object

A Signature object represents the call signature of a function and its return annotation. For each parameter accepted by the function it stores a Parameter object in its parameters collection.

A Signature object has the following public attributes and methods:

Signature objects are immutable. Use Signature.replace() to make a modified copy:

>>> def foo() -> None:
...     pass
>>> sig = signature(foo)

>>> new_sig = sig.replace(return_annotation="new return annotation")
>>> new_sig is not sig
True
>>> new_sig.return_annotation != sig.return_annotation
True
>>> new_sig.parameters == sig.parameters
True

>>> new_sig = new_sig.replace(return_annotation=new_sig.empty)
>>> new_sig.return_annotation is Signature.empty
True

There are two ways to instantiate a Signature class:

It’s possible to test Signatures for equality. Two signatures are equal when their parameters are equal, their positional and positional-only parameters appear in the same order, and they have equal return annotations.

Changes to the Signature object, or to any of its data members, do not affect the function itself.

Signature also implements __str__:

>>> str(Signature.from_function((lambda *args: None)))
'(*args)'

>>> str(Signature())
'()'
Parameter Object

Python’s expressive syntax means functions can accept many different kinds of parameters with many subtle semantic differences. We propose a rich Parameter object designed to represent any possible function parameter.

A Parameter object has the following public attributes and methods:

Parameter constructor:

Two parameters are equal when they have equal names, kinds, defaults, and annotations.

Parameter objects are immutable. Instead of modifying a Parameter object, you can use Parameter.replace() to create a modified copy like so:

>>> param = Parameter('foo', Parameter.KEYWORD_ONLY, default=42)
>>> str(param)
'foo=42'

>>> str(param.replace())
'foo=42'

>>> str(param.replace(default=Parameter.empty, annotation='spam'))
"foo:'spam'"
BoundArguments Object

Result of a Signature.bind call. Holds the mapping of arguments to the function’s parameters.

Has the following public attributes:

The arguments attribute should be used in conjunction with Signature.parameters for any arguments processing purposes.

args and kwargs properties can be used to invoke functions:

def test(a, *, b):
    ...

sig = signature(test)
ba = sig.bind(10, b=20)
test(*ba.args, **ba.kwargs)

Arguments which could be passed as part of either *args or **kwargs will be included only in the BoundArguments.args attribute. Consider the following example:

def test(a=1, b=2, c=3):
    pass

sig = signature(test)
ba = sig.bind(a=10, c=13)

>>> ba.args
(10,)

>>> ba.kwargs:
{'c': 13}
Implementation

The implementation adds a new function signature() to the inspect module. The function is the preferred way of getting a Signature for a callable object.

The function implements the following algorithm:

Note that the Signature object is created in a lazy manner, and is not automatically cached. However, the user can manually cache a Signature by storing it in the __signature__ attribute.

An implementation for Python 3.3 can be found at [1]. The python issue tracking the patch is [2].

Design Considerations No implicit caching of Signature objects

The first PEP design had a provision for implicit caching of Signature objects in the inspect.signature() function. However, this has the following downsides:

Some functions may not be introspectable

Some functions may not be introspectable in certain implementations of Python. For example, in CPython, built-in functions defined in C provide no metadata about their arguments. Adding support for them is out of scope for this PEP.

Signature and Parameter equivalence

We assume that parameter names have semantic significance–two signatures are equal only when their corresponding parameters are equal and have the exact same names. Users who want looser equivalence tests, perhaps ignoring names of VAR_KEYWORD or VAR_POSITIONAL parameters, will need to implement those themselves.

Examples Visualizing Callable Objects’ Signature

Let’s define some classes and functions:

from inspect import signature
from functools import partial, wraps


class FooMeta(type):
    def __new__(mcls, name, bases, dct, *, bar:bool=False):
        return super().__new__(mcls, name, bases, dct)

    def __init__(cls, name, bases, dct, **kwargs):
        return super().__init__(name, bases, dct)


class Foo(metaclass=FooMeta):
    def __init__(self, spam:int=42):
        self.spam = spam

    def __call__(self, a, b, *, c) -> tuple:
        return a, b, c

    @classmethod
    def spam(cls, a):
        return a


def shared_vars(*shared_args):
    """Decorator factory that defines shared variables that are
       passed to every invocation of the function"""

    def decorator(f):
        @wraps(f)
        def wrapper(*args, **kwargs):
            full_args = shared_args + args
            return f(*full_args, **kwargs)

        # Override signature
        sig = signature(f)
        sig = sig.replace(tuple(sig.parameters.values())[1:])
        wrapper.__signature__ = sig

        return wrapper
    return decorator


@shared_vars({})
def example(_state, a, b, c):
    return _state, a, b, c


def format_signature(obj):
    return str(signature(obj))

Now, in the python REPL:

>>> format_signature(FooMeta)
'(name, bases, dct, *, bar:bool=False)'

>>> format_signature(Foo)
'(spam:int=42)'

>>> format_signature(Foo.__call__)
'(self, a, b, *, c) -> tuple'

>>> format_signature(Foo().__call__)
'(a, b, *, c) -> tuple'

>>> format_signature(Foo.spam)
'(a)'

>>> format_signature(partial(Foo().__call__, 1, c=3))
'(b, *, c=3) -> tuple'

>>> format_signature(partial(partial(Foo().__call__, 1, c=3), 2, c=20))
'(*, c=20) -> tuple'

>>> format_signature(example)
'(a, b, c)'

>>> format_signature(partial(example, 1, 2))
'(c)'

>>> format_signature(partial(partial(example, 1, b=2), c=3))
'(b=2, c=3)'
Annotation Checker
import inspect
import functools

def checktypes(func):
    '''Decorator to verify arguments and return types

    Example:

        >>> @checktypes
        ... def test(a:int, b:str) -> int:
        ...     return int(a * b)

        >>> test(10, '1')
        1111111111

        >>> test(10, 1)
        Traceback (most recent call last):
          ...
        ValueError: foo: wrong type of 'b' argument, 'str' expected, got 'int'
    '''

    sig = inspect.signature(func)

    types = {}
    for param in sig.parameters.values():
        # Iterate through function's parameters and build the list of
        # arguments types
        type_ = param.annotation
        if type_ is param.empty or not inspect.isclass(type_):
            # Missing annotation or not a type, skip it
            continue

        types[param.name] = type_

        # If the argument has a type specified, let's check that its
        # default value (if present) conforms with the type.
        if param.default is not param.empty and not isinstance(param.default, type_):
            raise ValueError("{func}: wrong type of a default value for {arg!r}". \
                             format(func=func.__qualname__, arg=param.name))

    def check_type(sig, arg_name, arg_type, arg_value):
        # Internal function that encapsulates arguments type checking
        if not isinstance(arg_value, arg_type):
            raise ValueError("{func}: wrong type of {arg!r} argument, " \
                             "{exp!r} expected, got {got!r}". \
                             format(func=func.__qualname__, arg=arg_name,
                                    exp=arg_type.__name__, got=type(arg_value).__name__))

    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        # Let's bind the arguments
        ba = sig.bind(*args, **kwargs)
        for arg_name, arg in ba.arguments.items():
            # And iterate through the bound arguments
            try:
                type_ = types[arg_name]
            except KeyError:
                continue
            else:
                # OK, we have a type for the argument, lets get the corresponding
                # parameter description from the signature object
                param = sig.parameters[arg_name]
                if param.kind == param.VAR_POSITIONAL:
                    # If this parameter is a variable-argument parameter,
                    # then we need to check each of its values
                    for value in arg:
                        check_type(sig, arg_name, type_, value)
                elif param.kind == param.VAR_KEYWORD:
                    # If this parameter is a variable-keyword-argument parameter:
                    for subname, value in arg.items():
                        check_type(sig, arg_name + ':' + subname, type_, value)
                else:
                    # And, finally, if this parameter a regular one:
                    check_type(sig, arg_name, type_, arg)

        result = func(*ba.args, **ba.kwargs)

        # The last bit - let's check that the result is correct
        return_type = sig.return_annotation
        if (return_type is not sig._empty and
                isinstance(return_type, type) and
                not isinstance(result, return_type)):

            raise ValueError('{func}: wrong return type, {exp} expected, got {got}'. \
                             format(func=func.__qualname__, exp=return_type.__name__,
                                    got=type(result).__name__))
        return result

    return wrapper
Acceptance

PEP 362 was accepted by Guido, Friday, June 22, 2012 [3] . The reference implementation was committed to trunk later that day.

References Copyright

This document has been placed in the public domain.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4