A method of identifying a subject having cancer who is likely to benefit from treatment with a combination therapy with a RAF inhibitor and a second inhibitor is provided. A method of treating cancer in a subject in need thereof is also provided and includes administering to the subject an effective amount of a RAF inhibitor and an effective amount of a second inhibitor, wherein the second inhibitor is a MEK inhibitor, a CRAF inhibitor, a CrkL inhibitor or a TPL2/COT inhibitor. A method of identifying a kinase target that confers resistance to a first inhibitor is also provided.
DescriptionThis application claims the benefit of the filing date under 35 U.S.C. §119(e) of the following Provisional U.S. Patent Application Serial Nos. 61/312,193, filed Mar. 9, 2010; 61/312,519, filed Mar. 10, 2010; 61/326,021, filed Apr. 20, 2010; and 61/415,569, filed Nov. 19, 2010, all of which are hereby incorporated by reference in their entirety.
This invention was made with government support under federal grant numbers K08 CA115927 and 1DP20D002750 awarded by National Institutes of Health. The government has certain rights in the invention.
Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. (Davies, H. et al., Nature 417, 949-954 (2002).) Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma (Hoeflich, K. P. et al., Cancer Res. 69, 3042-3051 (2009); McDermott, U. et al., Proc. Natl. Acad. Sci. USA 104, 19936-19941 (2007); Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358-362 (2006); Wan, P. T. et al., Cell 116, 855-867 (2004); Wellbrock, C. et al., Cancer Res. 64, 2338-2342 (2004))âan observation that has been validated by the success of RAF or MEK inhibitors in clinical trials (Flaherty, K. T. et al., N. Engl. J. Med. 363, 809-819 (2010); Infante, J. R. et al., J. Clin. Oncol. 28 (suppl.), 2503 (2010); Schwartz, G. K. et al., J. Clin. Oncol. 27 (suppl.), 3513 (2009).) However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. (Engelman, J. A. et al., Science 316, 1039-1043 (2007); Gorre, M. E. et al., Science 293, 876-880 (2001); Heinrich, M. C. et al., J. Clin. Oncol. 24, 4764-4774 (2006); Daub, H., Specht, K. & Ullrich, A. Nature Rev. Drug Discov. 3, 1001-1010 (2004).) Accordingly, there remains a need for new methods for identification of resistance mechanisms in a manner that elucidates âdruggableâ targets for effective long-term treatment strategies, for new methods of identifying patients that are likely to benefit from the treatment strategies, and for methods of treating patients with the effective long-term treatment strategies.
The present invention relates to the development of resistance to therapeutic agents in the treatment of cancer and identification of targets that confer resistance to treatment of cancer. The present invention also relates to identification of parallel drug targets for facilitating an effective long-term treatment strategy and to identifying patients that would benefit from such treatment.
Accordingly, in one aspect, a method of identifying a subject having cancer who is likely to benefit from treatment with a combination therapy with a RAF inhibitor and a second inhibitor is provided. The method includes assaying a gene copy number, a mRNA or a protein level or phosphorylation of one or more kinase targets selected from the group consisting of MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3) in cancer cells obtained from the subject. The method further includes comparing the gene copy number, the mRNA or the protein level or the phoshorylation with a gene copy number, a mRNA or a protein level or phosphorylation of the target kinase in cells obtained from a subject without the cancer and correlating increased gene copy number or an alteration in mRNA expression or protein overexpression or phosphorylation of the target kinase in the cancer cells relative to the cells from the subject without the cancer with the subject having the cancer who is likely to benefit from treatment with the combination therapy.
In another aspect, a method of treating cancer in a subject in need thereof is provided. The method includes administering to the subject an effective amount of a RAF inhibitor and an effective amount of a second inhibitor, wherein the second inhibitor is a MEK inhibitor or a TPL2/COT inhibitor.
In another aspect, a method of identifying a kinase target that confers resistance to a first inhibitor is provided. The method includes culturing cells having sensitivity to the first inhibitor and expressing a plurality of kinase ORF clones in the cell cultures, each cell culture expressing a different kinase ORF clone. The method further includes exposing each cell culture to the inhibitor and identifying cell cultures having greater viability than a control cell culture after exposure to the inhibitor to identify the kinase ORF clone that confers resistance to the first inhibitor.
FIG. 1 illustrates an ORF-based functional screen which identified COT and C-RAF kinases as drivers of resistance to B-RAF inhibition. (a) Schematic overview of the CCSB/Broad Institute Kinase ORF collection. Kinase classification and number of kinases per classification are noted; (b) A375 cells expressing the CCSB/Broad Institute Kinase ORF collection were assayed for relative viability in 1 μM PLX4720 and normalized to constitutively active MEK1 (MEK1 DD). Nine ORFs (circles) scored 2 standard deviations (dashed line, 58.64%) from the mean of all ORFs (dashed line, 44.26%); (c) Indicated ORFs were expressed in 5 B-RAFV600E cell lines and treated with DMSO or 1 μM PLX4720. Viability (relative to DMSO) was quantified after 4 days. Error bars represent standard deviation between replicates (n=6); (d) Secondary screen in A375 and SKMEL28 prioritizes the top 9 candidate ORFs across a multipoint PLX4720 concentration scale.
FIG. 2 illustrates resistance to B-RAF inhibition via MAPK pathway activation. (a) Indicated ORFs were expressed in A375. Levels of phosphorylated MEK and ERK were assayed following 18 h. treatment with DMSO (â) or PLX4720 (concentration noted); (b) Proliferation of A375 expressing indicated ORFs. Error bars represent standard deviation between replicates (n=6). (c) C-RAF (S338) and ERK phosphorylation in lysates from A375 expressing indicated ORFs. (d) COT expression in lysates from immortalized primary melanocytes expressing BRAFV600E or empty vector. COT mRNA has an internal start codon (30M) resulting in two protein products of different lengths; amino acids 1-467 or 30-467, noted with arrows. (e) COT and ERK phosphorylation in lysates from A375 expressing indicated ORFs following shRNA-mediated B-RAF depletion (shBRAF) relative to control shRNA (shLuc). (f) ERK phosphorylation in lysates from A375 expressing indicated ORFs following shRNA-mediated C-RAF depletion (shCRAF) or control shRNA (shLuc), following 18 h. treatment with DMSO (â) or 1 μM PLX4720 (+).
FIG. 3 illustrates COT expression predicts resistance to B-RAF inhibition in cancer cell lines. (a) MAP3K8/COT copy number; red bars: COT amplification, blue bars: non-amplified COT; (b) COT expression in B-RAFV600E cell lines and (c) short-term cultures; (d) PLX4720 GI50 in B-RAFV600E cell lines. Colors as in (a); (e) MEK and ERK phosphorylation following treatment with DMSO or PLX4720 (concentration indicated); (f) ERK phosphorylation in M307 lysates (AZD-R; AZD6244-resistant) treated with DMSO or 1 μM PLX4720 (PLX) or CI-1040 (CI); (g) COT mRNA expression (QRT/PCR) in patient/lesion-matched PLX4032-treated metastatic melanoma tissue samples. Pts. 1 and 3 had multiple biopsies from the same lesion. Error bars represent SEM (n=3) U; undetermined/undetectable; (h) ERK and MEK phosphorylation in RPMI-7951 following shRNA-mediated COT depletion (shCOT) versus control (shLuc) and treatment with DMSO (â) or 1 μM PLX4720 (+). ERK and MEK phosphorylation are quantified; (i) ERK and MEK phosphorylation in RPMI-7951 following 1 h. treatment with a small molecule COT kinase inhibitor. ERK and MEK phosphorylation are quantified. (j) PLX4720 sensitivity curves in a panel of BRAFV600E cell lines. OUMS-23 and M307 represent cell lines with COT expression/amplification and all others represent cell lines with undetectable/unaltered COT; (k) Selective expression of COT and corresponding MAPK pathway activation in a metastatic subcutaneous malignant melanoma with acquired resistance to PLX4032 (* denotes a background band, MET-MM (PLX-R); metastatic malignant melanoma, PLX4032-resistant).
FIG. 4 illustrates COT-expressing B-RAFV600E cell lines exhibit resistance to allosteric MEK inhibitors. (a) CI-1040 GI50 in a panel of B-RAFV600E cell lines; (b) MEK and ERK phosphorylation in lysates from indicated cell lines treated with DMSO or CI-1040 (concentration noted); (c) Fold change (relative to MEK1) GI50 of A375 ectopically expressing the indicated ORFs for PLX4720, RAF265, CI-1040 and AZD6244; (d) ERK phosphorylation in A375 expressing indicated ORFs following treatment with DMSO or 1 μM of PLX4720, RAF265, CI-1040 or AZD6244; (e) Viability of A375 expressing the indicated ORFs and treated with DMSO, PLX4720 (concentration indicated) and PLX4720 in combination with CI-1040 or AZD6244 (all 1 μM). Error bars represent the standard deviation (n=6); (f) ERK phosphorylation in A375 expressing indicated ORFs following treatment with DMSO, PLX4720 (1 μM) or PLX4720 in combination with CI-1040 or AZD6244 (all 1 μM); (g) Cell lines with aberrant MAP3K8/COT copy number/expression are insensitive to the allosteric MEK inhibitor CI-1040 or (h) AZD6244; (i) A schematic outlining the formation of MAP3K complexes in response to B-RAF inhibition in B-RAFV600E-mutant cell lines. PLX4720 positions C-RAF in a signaling-competent complex (upper right panel) that is activated by oncogenic events upstream of C-RAF (lower right panel), subsequently driving resistance. In the context of COT expression, COT/RAF-containing complexes are sufficient to activate the MAPK pathway and mediate resistance (lower left panel).
FIG. 5 illustrates a schematic outline of an ORF-based functional screen for kinases that drive resistance to B-RAF inhibition. The B-RAFV600E cell line A375 was lentivirally transduced with the 597 kinases in the CCSB/Broad Institute Kinase ORF Collection. ORFs having a positive or negative effect on proliferation in control-treated A375 were identified and removed from final analysis. Resistance-promoting ORFs were identified by generating a differential viability ratio between B-RAF inhibited (PLX4720-treated) and control-treated cells. Differential viability was normalized to a constitutively active MEK1 allele, MEK1DD; an assay specific positive control.
FIG. 6 illustrates that the CCSB/Broad Institute Kinase ORF Collection is well expressed via high titer lentivirus. (a), schematic of the pLX-BLAST-V5 lentiviral expression vector used for all ORF-screens and subsequent validation. (b) GFP-tagged ORFs representing a broad size range were lentivirally expressed in Jurkat cells and the percentage of GFP-expressing cells/ORF (e.g., infected cells) quantified, demonstrating high viral titer across a range of ORF sizes. (c), expression of 96 random ORFs detected via LiCor with antibodies against the V5-epitope tag, relative to cellular DNA. Expression was detectable in 83% of the wells.
FIG. 7 illustrates the expression of candidate resistance ORFs. 293T were transiently transfected with pLX-BLAST-V5-ORF (indicated) and expression detected using an anti-V5-HRP antibody. The AXL clone is âclosedâ and has a stop codon preceding the V5 tag. See FIG. 12 for verification of expression; (*) on dark-exposure indicate the expression of three ORFs not visible in the lighter exposure.
FIG. 8 illustrates that a secondary screen prioritizes the top 9 candidate B-RAF inhibitor resistance ORFs. The top nine ORFs scoring in the primary screen were expressed in A375 or SKMEL28 and a GI50 from an 8-point PLX4720 concentration range.
FIG. 9 illustrates the effects of ORF expression on proliferation in B-RAFV600E cell lines. Proliferation, relative to MEK1, in (a) A375 or (b) SKMEL28 expressing indicated ORFs after 7 days of growth.
FIG. 10 illustrates that ectopic expression of constitutively active MEK1 (MEK1DD) and COT lead to increased pMEK/pERK in A375, whereas C-RAF reduces pMEK/pERK levels. Lysates from A375 ectopically expressing GFP, MEK1, MEKDD, COT or C-RAF were analyzed via immunoblot for levels of pERK and pMEK. GFP and MEK1 (lanes 1-3) were separated from COT/C-RAF (lanes 4-5) to prevent residual V5-MEK1 signal from overwhelming that of COT and C-RAF, which are expressed at much lower levels.
FIG. 11 illustrates that the kinase activity of COT and C-RAF is required for sustained ERK phosphorylation in the context of PLX4720 treatment. Immunoblot analysis of A375 expressing ectopic (a) MEK1, wild type COT or kinase inactive COT (COTK167R) or (b) MEK1, wild type C-RAF or kinase inactive C-RAF (C-RAFK375M) treated with 1 μM PLX4720 for 18 h.
FIG. 12 illustrates the effects of ORF expression on MAPK signaling in the context of the B-RAF inhibitor PLX4720. MAPK pathway activation was assessed by immunoblot analysis of pERK and pMEK in A375 expressing the indicated ORFs in the presence of PLX4720 (18 h., concentration indicated). (*) indicates the use of an antibody directed against the expressed ORF, not the V5 epitope. AXL was cloned without the V5 tag.
FIG. 13 illustrates that B-RAF associates with immunoprecipitated C-RAF in A375 following 18 hr. treatment with 1 μM PLX4720 (+) or DMSO (â), (a). WCE; whole cell extract controls. Ectopically expressed C-RAF constitutively associates with B-RAF and is phosphorylated at S338, consistent with membrane localization and activation. MEK1, MEKDD and COT-expressing A375 show no evidence of C-RAF activation, (b).
FIG. 14 illustrates that Retroviral expression of a wild-type C-RAF or a high-activity truncation mutant of C-RAF (C-RAF(22W)) renders A375 resistant to the B-inhibitor PLX4720 (a) and leads to sustained pERK levels in the context of PLX4720 treatment (1 μM, 18 h.), (b). C-RAF expression levels achieved with retroviruses are significantly lower than with lentiviral-based systems, resulting in a lower GI50 than that achieved with lentiviral C-RAF.
FIG. 15 illustrates the effects of B-RAFV600E on COT mRNA (a) Quantitative RT/PCR of COT mRNA expression relative to GAPDH mRNA expression in transformed primary melanocytes expressing wild-type B-RAF (vector) or B-RAFV600E COT expression was normalized to that of vector-expressing primary melanocytes. (**) Significant, p 0.05 (Student's two-tailed, paired T-Test). Endogenous COT mRNA is undetectable in PLX4720-sensitive A375 and ectopically expressed COT mRNA levels are unaffected by 1 μM PLX4720 treatment. A375 expressing GFP or COT were treated for 18 h. with 1 μM PLX4720. Reverse-transcribed mRNA was analyzed for GAPDH-normalized COT expression, relative to GFP-expressing, DMSO treated, A375. (*) Not significant, p>0.05 (Student's two-tailed, paired T-Test). Error bars represent SEM.
FIG. 16 illustrates that B- and C-RAF protein levels are not required for COT-mediated ERK phosphorylation. A375 expressing ectopic MEK1 (control) or COT were sequentially infected with lentivirus expressing shRNAs targeting B-RAF, C-RAF or control shRNA (shLuc) and assayed for expression of the indicated proteins in the presence (+) or absence (â) of 1 μM PLX4720, 18 h.
FIG. 17 illustrates SNP analysis of 752 cell lines reveals copy number alterations in MAP3K8/COT. Of the 752 cell lines hat had undergone copy number analysis, 534 had also undergone mutation profiling. Thirty-eight (7.1%) of mutation-profiled cells harbor the B-RAFV600E mutation. Two cell lines (OUMS-23, RPMI-7951, indicated) harbor the B-RAFV600E mutation along with copy number gain in MAP3K8/COT.
FIG. 18 illustrates MAP3K8/COT alterations in the cancer cell line OUMS-23. (a) RMA signal of a MAP3K8/COT probe (noted) from mRNA microarray analysis. OUMS-23 is one of the top 2% (of 765 cell lines) expressing COT mRNA. (b) COT mRNA expression in a panel of B-RAFV600E-mutant cell lines. (c) Endogenous COT protein expression in OUMS-23 relative to ectopically expressed COT in A375 and SKMEL28 cell lines, as determined via immunoblot analysis of the indicated cells.
FIG. 19 illustrates that COT mRNA and protein are expressed in B RAF-inhibitor resistant cell lines and tissue. (a) RT/PCR analysis of GAPDH normalized COT mRNA expression in a panel of cell lines, short term cultures and tissue from relapsed, PLX4032-treated, malignant melanoma (MM-R). Corresponding protein expression for cell lines and short term cultures are shown in FIGS. 3 b and 3 c, respectively. (b) Western blot analysis of lysates from primary melanocytes (1° Mel(B-RAF WT)), patient matched normal skin (Skin) and metastatic malignant melanoma (MM-R; COT mRNA shown in panel a), A375 cells and primary melanocytes expressing B-RAFV600E(1° MeI (B-RAFV600E)).
FIG. 20 illustrates that depletion of COT affects viability in the COT amplified cell line RPMI-7951. (a) Quantification of RPMI-7951 viability following lentiviral shRNA-mediated COT depletion (shCOT), relative to control shRNA (shLuc). Error bars represent standard deviation between replicates. (b) Immunoblot analysis showing relative COT protein expression in shLuc and shCOT-expressing RPMI-7951.
FIG. 21 illustrates effects of ORF expression on the GI50 of a panel of MAPK pathway inhibitors in SKMEL28. The half-maximal growth-inhibitory concentration (GI50) of SKMEL28 ectopically expressing MEK1, MEK1DD or COT was determined for the RAF inhibitors PLX4720 and RAF265 and the MEK1/2 inhibitors CI-1040 and AZD6244. The change in GI50 for MEK1DD and COT (relative to MEK1) was determined for each compound.
FIG. 22 illustrates that COT can activate ERK via MEK-independent and MEK-dependent mechanisms. (a) Immunoblot analysis of ERK phosphorylation in lysates from A375 following expression of GFP or COT and subsequent lentiviral shRNA-mediated MEK1, MEK2 or MEK1 and MEK2 (MEK1+2) depletion, relative to control shRNA (shLuc). Left and right panels represent two different pairs of MEK1 and MEK2 shRNA constructs. (b) Immunoblot blot analysis of recombinant, inactive ERK phosphorylation (Thr202/Tyr204) by recombinant COT in an in vitro kinase assay.
FIG. 23 illustrates that combinatorial MAPK pathway inhibition effectively suppresses proliferation in SKMEL28. Viability (relative to DMSO) of SKMEL28 ectopically expressing MEK1, MEK1DD or COT and treated with DMSO, PLX4720 (concentration indicated), PLX4720 (1 μM) and CI-1040 (1 μM) or PLX4720 (1 μM) and AZD6244 (1 μM). Error bars represent the standard deviation between replicates.
FIG. 24 illustrates that COT over expression is sufficient to render melanoma cancer cells with the B-RAFV600E mutation resistant to B-RAF inhibition.
FIG. 25 illustrates the top nine ORFs scoring in the primary screen were expressed in (a) SKEL28 of (b) A375 and a GI50 is shown for 4 MAPK pathway inhibitors (PLX4720, RAF265, CI-1040, AZD-6244).
FIG. 26 illustrates that CRKL expression modifies sensitivity to the selective B-RAF inhibitor PLX4720 in a panel of B-RAFv600E cell lines.
FIG. 27 illustrates the MAP3K8/COT-amplified/B-RAFV600E-mutant cancer cell line OUMS-23 shows constitutive phosphorylation of ERK/MEK across a dose range of PLX4720.
FIG. 28 illustrates the insensitivity to MAPK pathway inhibition corresponds with MAP3K8/COT copy number gains in a subset of skin cancer cell lines. A panel of 20 B-RAFV600E-mutant cell lines and their sensitivity to (a) the B-RAF inhibitor PLX4720 and (b) the MEK inhibitor AZD6244 is shown.
The present invention relates to the development of resistance to therapeutic agents in the treatment of cancer and identification of targets that confer resistance to treatment of cancer. The present invention also relates to identification of parallel drug targets for facilitating an effective long-term treatment strategy and to identifying patients that would benefit from such treatment. In some embodiments, the present invention relates to kinases and in particular to MAP kinase pathway components.
The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, immunology, microbiology, cell biology and recombinant DNA, which are within the skill of the art. See e.g., Sambrook, Fritsch and Maniatis, MOLECULAR CLONING: A LABORATORY MANUAL, (Current Edition); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel et al. eds., (Current Edition)); the series METHODS IN ENZYMOLOGY (Academic Press, Inc.): PCR 2: A PRACTICAL APPROACH (Current Edition) ANTIBODIES, A LABORATORY MANUAL and ANIMAL CELL CULTURE (R. I. Freshney, ed. (1987)). DNA Cloning: A Practical Approach, vol. I & II (D. Glover, ed.); Oligonucleotide Synthesis (N. Gait, ed., Current Edition); Nucleic Acid Hybridization (B. Hames & S. Higgins, eds., Current Edition); Transcription and Translation (B. Hames & S. Higgins, eds., Current Edition); Fundamental Virology, 2nd Edition, vol. I & II (B. N. Fields and D. M. Knipe, eds.)
The mitogen-activated protein kinase (MAPK) cascade is a critical intracellular signaling pathway that regulates signal transduction in response to diverse extracellular stimuli, including growth factors, cytokines, and proto-oncogenes. Activation of this pathway results in transcription factor activation and alterations in gene expression, which ultimately lead to changes in cellular functions including cell proliferation, cell cycle regulation, cell survival, angiogenesis and cell migration. Classical MAPK signaling is initiated by receptor tyrosine kinases at the cell surface, however many other cell surface molecules are capable of activating the MAPK cascade, including integrins, heterotrimeric G-proteins, and cytokine receptors.
Ligand binding to a cell surface receptor, e.g., a receptor tyrosine kinase, typically results in phosphorylation of the receptor. The adaptor protein Grb2 associates with the phosphorylated intracellular domain of the activated receptor, and this association recruits guanine nucleotide exchange factors including SOS-I and CDC25 to the cell membrane. These guanine nucleotide exchange factors interact with and activate the GTPase Ras. Common Ras isoforms include K-Ras, N-Ras, H-Ras and others. Following Ras activation, the serine/threonine kinase Raf (e.g., A-Raf, B-Raf or Raf-1) is recruited to the cell membrane through interaction with Ras. Raf is then phosphorylated. Raf directly activates MEKI and MEK2 by phosphorylation of two serine residues at positions 217 and 221. Following activation, MEKI and MEK2 phosphorylate tyrosine (Tyr-185) and threonine (Thr-183) residues in serine/threonine kinases Erkl and Erk2, resulting in Erk activation. Activated Erk regulates many targets in the cytosol and also translocates to the nucleus, where it phosphorylates a number of transcription factors regulating gene expression. Erk kinase has numerous targets, including Elk-I, c-Etsl, c-Ets2, p90RSKI, MNKI, MNK2, MSKI, MSK2 and TOB. While the foregoing pathway is a classical representation of MAPK signaling, there is considerable cross talk between the MAPK pathway and other signaling cascades.
Aberrations in MAPK signaling have a significant role in cancer biology. Altered expression of Ras is common in many cancers, and activating mutations in Ras have also been identified. Such mutations are found in up to 30% of all cancers, and are especially common in pancreatic (90%) and colon (50%) carcinomas. In addition, activating Raf mutations have been identified in melanoma and ovarian cancer. The most common mutation, BRAFV600E, results in constitutive activation of the downstream MAP kinase pathway and is required for melanoma cell proliferation, soft agar growth, and tumor xenograft formation. Based on the defined role of MAPK over-activation in human cancers, targeting components of the MAPK pathway with specific inhibitors is a promising approach to cancer therapy. However, patients may have innate resistance or acquire resistance to these promising therapies. Identification of target kinases, diagnostic and/or prognostic markers and treatment therapies for these patients with innate or acquired resistance are described below.
High Throughput Functional Screening Assay
In some aspects, the present invention relates to methods of identifying targets capable of driving resistance to clinically efficacious therapies using a high throughput screening assay. In some embodiments, the method may include an open reading frame (ORF)-based functional screen for kinases that drive resistance to therapeutic agents. The method may include providing a cell line with a kinase known to have an oncogenic mutation. A library of kinase ORFs may be individually expressed in the cell line so that a plurality of clones each expressing a different ORF from the library may be further evaluated. Each clone may be (1) exposed to an inhibitor of the known kinase in the cell line and (2) monitored for growth changes based on the expression of the ORF in the cell line without the inhibitor. Any clones having a growth effect from the ORF expression alone, either positive or negative growth, are eliminated. The remaining clones each expressing a different kinase are then compared for viability between a control and a treated clone and normalized to a positive control. Increased cell viability after treatment with the inhibitor identifies ORFs that confer resistance and therefore identifies kinase targets for treatment with an additional inhibitor. In some embodiments, clones scoring above two standard deviations from the normalized mean may be target kinases indicating treatment with an additional inhibitor is beneficial to the subject.
By way of non-limiting example, a schematic of a high throughput functional screening assay for kinases that drive resistance to B-RAF inhibition is shown in FIG. 5 . A collection of Ë600 cloned and sequence validated ORFs were assembled, accounting for Ë75% of all annotated kinases (Center for Cancer Systems Biology (CCSB)/Broad Institute Kinase ORF Collection, FIGS. 1 a, 1 b, Table 3). This publically available collection can be rapidly transferred into a variety of expression vectors for various end-applications. Any type of expression vector known to one skilled in the art may be used to express the Kinase ORF collection. By way of non-limiting example, a selectable, epitope-tagged, lentiviral expression vector capable of producing high titer virus and robust ORF expression in mammalian cells may be created to express the kinase collection, (pLX-BLAST-V5, FIG. 6 a).
To identify kinases capable of circumventing RAF inhibition, the arrayed kinase ORF collection may be stably expressed in A375, a B-RAFV600E malignant melanoma cell line that is sensitive to the RAF kinase inhibitor PLX4720 ( FIGS. 1 a, 1 b and 6 c, Table 3). Clones of ORF expressing cells treated with 1 μM PLX4720 are screened for viability relative to untreated cells and normalized to an assay-specific positive control, MEK1S218/222D (MEK1DD) (Table 4). ORFs that affected baseline viability or proliferation are removed from the analysis. Clones scoring above two standard deviations from the normalized mean may be further evaluated to identify a resistance conferring target kinase for a second inhibitor. In some embodiments, the gene encoding the target kinase may be MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3). In some embodiments, the gene encoding the target kinase may be a MAPK pathway activator. In some embodiments, the gene encoding the target kinase may be a MAP3 kinase that directly phosphorylates and activates MEK. In some embodiments, the gene encoding the target kinase may encode an adapter protein that is amplified and phosphorylated in melanoma.
In other embodiments, the ORF collection may be stably expressed in a cell line having a different mutation in B-RAF, for example, another mutation at about amino acid position 600 such as V600K, V600D, and V600R. Additional B-RAF mutations include the mutations described in Davies et al. Nature, 417, 949-954, 2002, Table 1. Cell lines may be used that are sensitive to other RAF kinase inhibitors including, but not limited to, PLX4032; GDC-0879; RAF265; sorafenib; SB590855 and/or ZM 336372. In some embodiments, the ORF collection may be stably expressed in a cell line having a sensitivity to a MEK inhibitor. Non-limiting examples of MEK inhibitors include, AZD6244; CI-1040; PD184352; PD318088, PD98059, PD334581, RDEA119, 6-Methoxy-7-(3-morpholin-4-yl-propoxy)-4-(4-phenoxy-phenylamino)-quinoline-3-carbonitrile and 4-[3-Chloro-4-(1-methyl-1H-imidazol-2-ylsulfanyl)-phenylamino]-6-methoxy-7-(3-morpholin-4-yl-propoxy)-quinoline-3-carbonitrile. Additional RAF and MEK inhibitors are described below. By way of non-limiting example, exemplary RAF inhibitors are shown in Table 1 and exemplary MEK inhibitors are shown in Table 2.
Diagnostic/Prognostic Markers for Innate and Acquired Resistance to Targeted Therapies
In some aspects, the present invention relates to methods of detecting the presence of one or more diagnostic or prognostic markers in a sample (e.g. a biological sample from a cancer patient). A variety of screening methods known to one of skill in the art may be used to detect the presence of the marker in the sample including DNA, RNA and protein detection. The techniques described below can be used to determine the presence or absence of a kinase target in a sample obtained from a patient. In some embodiments, the patient may have innate or acquired resistance to kinase targeted therapies, including B-RAF inhibitors or MEK inhibitors. For example, the patient may have an innate or acquired resistance to B-RAF inhibitors PLX4720 and/or PLX4032. In some embodiments, the patient may have innate or acquired resistance to MEK inhibitor AZD6244. Identification of one or more kinase targets markers in a patient assists the physician in determining a treatment protocol for the patient. For example, in a patient having one or more kinase target markers, the physician may treat the patient with a combination therapy as described in more detail below.
In some embodiments, the kinase target may include, but is not limited to, MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3). The marker may be an increase in the gene copy number, an increase in protein expression, phosphorylation of one or more MAP kinase pathway members, a change in mRNA expression and the like, for the kinase target.
By way of non-limiting example, in a patient having an oncogenic mutation in B-RAF, identification of an activated target kinase can be useful for characterizing a treatment protocol for the patient. For example, in a patient having a B-RAFV600E mutation, treatment with a RAF inhibitor alone may indicate that the patient is at relatively high risk of acquiring resistance to the treatment after a period of time. In a patient having an oncogenic mutation, identification of an activated kinase target in that patient may indicate inclusion of a second inhibitor in the treatment protocol.
Identification of an activated kinase target may include an analysis of a gene copy number and identification of an increase in copy number of a target kinase. For example, a copy number gain in MAP3K8 is indicative of a patient having innate resistance or developing acquired resistance, in particular if the patient also has a B-RAFV600E mutation.
In some embodiments, identification of an activated kinase target may include an analysis of phosphorylation of a kinase target and/or a member of the MAP kinase pathway. For example, phosphorylation of C-RAF at S338 is indicative of a patient having innate resistance or developing acquired resistance, in particular if the patient also has a B-RAFV600E mutation. In some embodiments, identification of an increase in MEK/ERK phosphorylation may be indicative of a patient having innate resistance or developing acquired resistance. Increased COT protein expression in patients having a B-RAFV600E mutation may predict resistance to RAF inhibition and MEK inhibition.
Identification of an activated kinase target may include an analysis of mRNA expression of a kinase target. For example, an increase in COT mRNA expression following initial treatment with a first kinase inhibitor is indicative of a patient having or developing resistance. In some embodiments, the first kinase inhibitor may be a RAF inhibitor or a MEK inhibitor.
Methods of Treatment
In various embodiments, the invention provides methods for treatment of a patient having cancer. The methods generally comprise administration of a first inhibitor and a second inhibitor. One inhibitor may be a RAF inhibitor. The RAF inhibitor may be a pan-RAF inhibitor or a selective RAF inhibitor. Pan-RAF inhibitors include but are not limited to RAF265, sorafenib, or SB590885. In some embodiments, the RAF inhibitor is a B-RAF inhibitor. In some embodiments, the selective RAF inhibitor is PLX4720, PLX4032, or GDC-0879-A. One inhibitor may be a MEK inhibitor (see Table 2 illustrating exemplary MEK inhibitors). One inhibitor may be a COT inhibitor. By way of non-limiting example, the COT inhibitor may be a shRNA inhibitor as described below or a small molecule COT inhibitor, 4-(3-chloro-4-fluorophenylamino)-6-(pyridin-3-yl-methylamino)-3-cyano-[1,7]-naphthyridine (EMD; TPL2 inhibitor I; catalogue number 616373, PubChem ID: 9549300) Inhibitors of the present invention inhibit one or more of the kinase targets including MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3) or other MAP kinase pathway targets.
In some embodiments, a combination therapy for cancer is provided, comprising an effective amount of a RAF inhibitor and an effective amount of a MAP3K8 (TPL2/COT) inhibitor. Also provided herein is a combination therapy for cancer, comprising an effective amount of a RAF inhibitor and an effective amount of a MEK inhibitor. Other combination therapies include an effective amount of a RAF inhibitor and an effective amount of a second inhibitor targeting the gene, mRNA or protein encoded by one or more of the following: MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3). The combination therapy is suitable for treatment of a patient wherein the cancer contains B-RAF mutant cells and in particular, B-RAFV600E mutant cells. The present invention further provides a combination therapy for cancer, comprising an effective amount of a RAF inhibitor and an effective amount of a MEK inhibitor, wherein the subject with the cancer contains cells with altered MAP3K8 (TPL2/COT) expression or gene copy number. In some embodiments, the MEK inhibitor is CI-1040/PD184352 or AZD6244.
As a non-limiting example, the MEK inhibitor provided herein can be CI-1040, AZD6244, PD318088, PD98059, PD334581, RDEA119, 6-Methoxy-7-(3-morpholin-4-yl-propoxy)-4-(4-phenoxy-phenylamino)-quinoline-3-carbonitrile or 4-[3-Chloro-4-(1-methyl-1H-imidazol-2-ylsulfanyl)-phenylamino]-6-methoxy-7-(3-morpholin-4-yl-propoxy)-quinoline-3-carbonitrile, Roche compound RG7420, or combinations thereof. Additional MEK inhibitors known in the art may also be used.
In exemplary embodiments of the foregoing aspects, the RAF inhibitor provided herein is PLX4720, PLX4032, BAY 43-9006 (Sorafenib), ZM 336372, RAF 265, AAL-881, LBT-613, or CJS352 (NVP-AAL881-NX (hereafter referred to as AAL881) and NVP-LBT613-AG-8 (LBT613) are isoquinoline compounds (Novartis, Cambridge, Mass.). Additional exemplary RAF inhibitors useful for combination therapy include pan-RAF inhibitors, inhibitors of B-RAF, inhibitors of A-RAF, and inhibitors of RAF-1. In exemplary embodiments RAF inhibitors useful for combination therapy include PLX4720, PLX4032, BAY 43-9006 (Sorafenib), ZM 336372, RAF 265, AAL-881, LBT-613, and CJS352. Exemplary RAF inhibitors further include the compounds set forth in PCT Publication No. WO/2008/028141, the entire contents of which are incorporated herein by reference. Exemplary RAF inhibitors additionally include the quinazolinone derivatives described in PCT Publication No. WO/2006/024836, and the pyridinylquinazolinamine derivatives described in PCT Publication No. WO/2008/020203, the entire contents of which are incorporated herein by reference.
Administration of the combination includes administration of the combination in a single formulation or unit dosage form, administration of the individual agents of the combination concurrently but separately, or administration of the individual agents of the combination sequentially by any suitable route. The dosage of the individual agents of the combination may require more frequent administration of one of the agents as compared to the other agent in the combination. Therefore, to permit appropriate dosing, packaged pharmaceutical products may contain one or more dosage forms that contain the combination of agents, and one or more dosage forms that contain one of the combinations of agents, but not the other agent(s) of the combination.
Agents may contain one or more asymmetric elements such as stereogenic centers or stereogenic axes, e.g., asymmetric carbon atoms, so that the compounds can exist in different stereoisomeric forms. These compounds can be, for example, racemates or optically active forms. For compounds with two or more asymmetric elements, these compounds can additionally be mixtures of diastereomers. For compounds having asymmetric centers, it should be understood that all of the optical isomers and mixtures thereof are encompassed. In addition, compounds with carbon-carbon double bonds may occur in Z- and E-forms; all isomeric forms of the compounds are included in the present invention. In these situations, the single enantiomers (optically active forms) can be obtained by asymmetric synthesis, synthesis from optically pure precursors, or by resolution of the racemates. Resolution of the racemates can also be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral HPLC column.
Unless otherwise specified, or clearly indicated by the text, reference to compounds useful in the combination therapy of the invention includes both the free base of the compounds, and all pharmaceutically acceptable salts of the compounds. A preferred salt is the hydrochloride salt.
The term âpharmaceutically acceptable saltsâ includes derivatives of the disclosed compounds, wherein the parent compound is modified by making non-toxic acid or base addition salts thereof, and further refers to pharmaceutically acceptable solvates, including hydrates, of such compounds and such salts. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid addition salts of basic residues such as amines; alkali or organic addition salts of acidic residues such as carboxylic acids; and the like, and combinations comprising one or more of the foregoing salts. The pharmaceutically acceptable salts include non-toxic salts and the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, non-toxic acid salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, and nitric; other acceptable inorganic salts include metal salts such as sodium salt, potassium salt, and cesium salt; and alkaline earth metal salts, such as calcium salt and magnesium salt; and combinations comprising one or more of the foregoing salts.
Pharmaceutically acceptable organic salts include salts prepared from organic acids such as acetic, trifluoroacetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, mesylic, esylic, besylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, HOOC(CH2)nCOOH where n is 0-4; organic amine salts such as triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,Nâ²-dibenzylethylenediamine salt; and amino acid salts such as arginate, asparginate, and glutamate, and combinations comprising one or more of the foregoing salts.
An âeffective amountâ of a combination of agents (e.g., MEK and RAF inhibitors, or RAF and COT inhibitors, or RAF and an inhibitor targeting MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3)) is an amount sufficient to provide an observable improvement over the baseline clinically observable signs and symptoms of the disorder treated with the combination.
The pharmaceutical products can be administrated by oral or other forms, e.g., rectally or by parenteral injection. âOral dosage formâ is meant to include a unit dosage form prescribed or intended for oral administration. An oral dosage form may or may not comprise a plurality of subunits such as, for example, microcapsules or microtablets, packaged for administration in a single dose.
The pharmaceutical products can be released in various forms. âReleasable formâ is meant to include instant release, immediate-release, controlled-release, and sustained-release forms.
âInstant-releaseâ is meant to include a dosage form designed to ensure rapid dissolution of the active agent by modifying the normal crystal form of the active agent to obtain a more rapid dissolution.
âImmediate-releaseâ is meant to include a conventional or non-modified release form in which greater than or equal to about 50% or more preferably about 75% of the active agents is released within two hours of administration, preferably within one hour of administration.
âSustained-releaseâ or âextended-releaseâ includes the release of active agents at such a rate that blood (e.g., plasma) levels are maintained within a therapeutic range but below toxic levels for at least about 8 hours, preferably at least about 12 hours, more preferably about 24 hours after administration at steady-state. The term âsteady-stateâ means that a plasma level for a given active agent or combination of active agents, has been achieved and which is maintained with subsequent doses of the active agent(s) at a level which is at or above the minimum effective therapeutic level and is below the minimum toxic plasma level for a given active agent(s).
The term âtreatâ, âtreated,â âtreatingâ or âtreatmentâ is used herein to mean to relieve, reduce or alleviate at least one symptom of a disease in a subject. For example, treatment can be diminishment of one or several symptoms of a disorder or complete eradication of a disorder, such as cancer. Within the meaning of the present invention, the term âtreatâ also denote to arrest, delay the onset (i.e., the period prior to clinical manifestation of a disease) and/or reduce the risk of developing or worsening a disease. The term âprotectâ is used herein to mean prevent delay or treat, or all, as appropriate, development or continuance or aggravation of a disease in a subject. Within the meaning of the present invention, the disease is associated with a cancer.
The term âsubjectâ or âpatientâ is intended to include animals, which are capable of suffering from or afflicted with a cancer or any disorder involving, directly or indirectly, a cancer. Examples of subjects include mammals, e.g., humans, dogs, cows, horses, pigs, sheep, goats, cats, mice, rabbits, rats, and transgenic non-human animals. In certain embodiments, the subject is a human, e.g., a human suffering from, at risk of suffering from, or potentially capable of suffering from cancers.
The term âaboutâ or âapproximatelyâ usually means within 20%, more preferably within 10%, and most preferably still within 5% of a given value or range. Alternatively, especially in biological systems, the term âaboutâ means within about a log (i.e., an order of magnitude) preferably within a factor of two of a given value.
The use of the terms âaâ and âanâ and âtheâ and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms âcomprising, âhaving,â âincluding,â and âcontainingâ are to be construed as open-ended terms (i.e., meaning âincluding, but not limited toâ) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
As specified above, in one aspect, the instant invention provides a drug combination useful for treating, preventing, arresting, delaying the onset of and/or reducing the risk of developing, or reversing at least one symptom of cancer, in a subject comprising administering to the subject a combination therapy, comprising an effective amount of a RAF inhibitor and an effective amount of a MAP3K8 (TPL2/COT) inhibitor, or an effective amount of a RAF inhibitor and an effective amount of MEK inhibitor or an effective amount of a RAF inhibitor and an effective amount of a second inhibitor targeting MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3). Preferably, these inhibitors are administered at therapeutically effective dosages which, when combined, provide a beneficial effect. The administration may be simultaneous or sequential.
The term âcancerâ is used herein to mean a broad spectrum of tumors, including all solid tumors and hematological malignancies. Examples of such tumors include but are not limited to leukemias, lymphomas, myelomas, carcinomas, metastatic carcinomas, sarcomas, adenomas, nervous system cancers and geritourinary cancers. In exemplary embodiments, the foregoing methods are useful in treating adult and pediatric acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma, AIDS-related cancers, anal cancer, cancer of the appendix, astrocytoma, basal cell carcinoma, bile duct cancer, bladder cancer, bone cancer, osteosarcoma, fibrous histiocytoma, brain cancer, brain stem glioma, cerebellar astrocytoma, malignant glioma, ependymoma, medulloblastoma, supratentorial primitive neuroectodermal tumors, hypothalamic glioma, breast cancer, male breast cancer, bronchial adenomas, Burkitt lymphoma, carcinoid tumor, carcinoma of unknown origin, central nervous system lymphoma, cerebellar astrocytoma, malignant glioma, cervical cancer, childhood cancers, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloproliferative disorders, colorectal cancer, cutaneous T-cell lymphoma, endometrial cancer, ependymoma, esophageal cancer, Ewing family tumors, extracranial germ cell tumor, extragonadal germ cell tumor, extrahepatic bile duct cancer, intraocular melanoma, retinoblastoma, gallbladder cancer, gastric cancer, gastrointestinal stromal tumor, extracranial germ cell tumor, extragonadal germ cell tumor, ovarian germ cell tumor, gestational trophoblastic tumor, glioma, hairy cell leukemia, head and neck cancer, hepatocellular cancer, Hodgkin lymphoma, non-Hodgkin lymphoma, hypopharyngeal cancer, hypothalamic and visual pathway glioma, intraocular melanoma, islet cell tumors, Kaposi sarcoma, kidney cancer, renal cell cancer, laryngeal cancer, lip and oral cavity cancer, small cell lung cancer, non-small cell lung cancer, primary central nervous system lymphoma, Waldenstrom macroglobulinema, malignant fibrous histiocytoma, medulloblastoma, melanoma, Merkel cell carcinoma, malignant mesothelioma, squamous neck cancer, multiple endocrine neoplasia syndrome, multiple myeloma, mycosis fungoides, myelodysplastic syndromes, myeloproliferative disorders, chronic myeloproliferative disorders, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, neuroblastoma, oropharyngeal cancer, ovarian cancer, pancreatic cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytoma, pineoblastoma and supratentorial primitive neuroectodermal tumors, pituitary cancer, plasma cell neoplasms, pleuropulmonary blastoma, prostate cancer, rectal cancer, rhabdomyosarcoma, salivary gland cancer, soft tissue sarcoma, uterine sarcoma, Sezary syndrome, non-melanoma skin cancer, small intestine cancer, squamous cell carcinoma, squamous neck cancer, supratentorial primitive neuroectodermal tumors, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, transitional cell cancer, trophoblastic tumors, urethral cancer, uterine cancer, uterine sarcoma, vaginal cancer, vulvar cancer, and Wilms tumor.
In particular, the cancer may be associated with a mutation in the B-RAF gene. These cancers include melanoma, breast cancer, colorectal cancers, glioma, lung cancer, ovarian cancer, sarcoma and thyroid cancer.
In a particular embodiment, the therapeutic combination provided herein is effective for the treatment of moderate to severe cancer in a subject.
Dosages
The optimal dose of the combination of agents for treatment of cancer can be determined empirically for each subject using known methods and will depend upon a variety of factors, including the activity of the agents; the age, body weight, general health, gender and diet of the subject; the time and route of administration; and other medications the subject is taking. Optimal dosages may be established using routine testing and procedures that are well known in the art.
The amount of combination of agents that may be combined with the carrier materials to produce a single dosage form will vary depending upon the individual treated and the particular mode of administration. In some embodiments the unit dosage forms containing the combination of agents as described herein will contain the amounts of each agent of the combination that are typically administered when the agents are administered alone.
A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
In general, a suitable daily dose of a compound of the invention will be that amount of the compound that is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above and is readily determined by one having skill in the art.
Generally, therapeutically effective doses of the compounds of this invention for a patient, when used for the indicated analgesic effects, will range from about 0.0001 to about 1000 mg per kilogram of body weight per day, more preferably from about 0.01 to about 50 mg per kg per day.
If desired, the effective daily dose of the active compound may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.
Pharmaceutical Formulations and Routes of Administration
Provided herein are pharmaceutical formulations comprising a combination of agents for the treatment of cancer, e.g., melanoma. The pharmaceutical formulations may additionally comprise a carrier or excipient, stabilizer, flavoring agent, and/or coloring agent.
Provided herein are pharmaceutical formulations comprising combination of agents which can be, for example, a combination of two types of agents: (1) a RAF inhibitor and/or pharmacologically active metabolites, salts, solvates and racemates of the inhibitor and (2) a MAP3K8 (TPL2/COT) inhibitor and/or pharmacologically active metabolites, salts, solvates and racemates of the COT inhibitor. In another embodiment the combination of agents may be provided for a subject comprising BRAF mutant cells or comprising cells over expressing MAP3K8 (TPL2/COT) and include: (1) a RAF inhibitor and/or pharmacologically active metabolites, salts, solvates and racemates of the inhibitor and (2) a MEK inhibitor and/or pharmacologically active metabolites, salts, solvates and racemates of the MEK inhibitor.
The combination of agents may be administered using a variety of routes of administration known to those skilled in the art. The combination of agents may be administered to humans and other animals orally, parenterally, sublingually, by aerosolization or inhalation spray, rectally, intracisternally, intravaginally, intraperitoneally, bucally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration may also involve the use of transdermal administration such as transdermal patches or ionophoresis devices. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.
Methods of formulation are well known in the art and are disclosed, for example, in Remington: The Science and Practice of Pharmacy, Mack Publishing Company, Easton, Pa., 19th Edition (1995). Pharmaceutical compositions for use in the present invention can be in the form of sterile, non-pyrogenic liquid solutions or suspensions, coated capsules, suppositories, lyophilized powders, transdermal patches or other forms known in the art.
Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3 propanediol or 1,3 butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono or di glycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables. The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form may be accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations may also be prepared by entrapping the drug in liposomes or microemulsions, which are compatible with body tissues.
Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, acetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.
Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, EtOAc, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3 butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulations, ear drops, and the like are also contemplated as being within the scope of this invention.
The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
Compositions of the invention may also be formulated for delivery as a liquid aerosol or inhalable dry powder. Liquid aerosol formulations may be nebulized predominantly into particle sizes that can be delivered to the terminal and respiratory bronchioles.
Aerosolized formulations of the invention may be delivered using an aerosol forming device, such as a jet, vibrating porous plate or ultrasonic nebulizer, preferably selected to allow the formation of an aerosol particles having with a mass medium average diameter predominantly between 1 to 5 m. Further, the formulation preferably has balanced osmolarity ionic strength and chloride concentration, and the smallest aerosolizable volume able to deliver effective dose of the compounds of the invention to the site of the infection. Additionally, the aerosolized formulation preferably does not impair negatively the functionality of the airways and does not cause undesirable side effects.
Aerosolization devices suitable for administration of aerosol formulations of the invention include, for example, jet, vibrating porous plate, ultrasonic nebulizers and energized dry powder inhalers, that are able to nebulize the formulation of the invention into aerosol particle size predominantly in the size range from 1 5 m. Predominantly in this application means that at least 70% but preferably more than 90% of all generated aerosol particles are within 1 5 m range. A jet nebulizer works by air pressure to break a liquid solution into aerosol droplets. Vibrating porous plate nebulizers work by using a sonic vacuum produced by a rapidly vibrating porous plate to extrude a solvent droplet through a porous plate. An ultrasonic nebulizer works by a piezoelectric crystal that shears a liquid into small aerosol droplets. A variety of suitable devices are available, including, for example, AERONEB and AERODOSE vibrating porous plate nebulizers (AeroGen, Inc., Sunnyvale, Calif.), SIDESTREAM nebulizers (Medic Aid Ltd., West Sussex, England), PARI LC and PARI LC STAR jet nebulizers (Pari Respiratory Equipment, Inc., Richmond, Va.), and AEROSONIC (DeVilbiss Medizinische Produkte (Deutschland) GmbH, Heiden, Germany) and ULTRAAIRE (Omron Healthcare, Inc., Vernon Hills, Ill.) ultrasonic nebulizers.
Compounds of the invention may also be formulated for use as topical powders and sprays that can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel. The compounds of the present invention can also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono or multi lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used. The present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like. The preferred lipids are the phospholipids and phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art. See, for example, Prescott (ed.), âMethods in Cell Biology,â Volume XIV, Academic Press, New York, 1976, p. 33 et seq.
To identify kinases capable of circumventing RAF inhibition, 597 sequence-validated kinase ORF clones representing Ë75% of annotated kinases (Center for Cancer Systems Biology (CCSB)/Broad Institute Kinase ORF Collection) were assembled and stably expressed in A375, a B-RAFV600E malignant melanoma cell line that is sensitive to the RAF kinase inhibitor PLX4720 (Tsai, J. et al. Proc. Natl. Acad. Sci. USA 105, 3041-3046 (2008)) ( FIG. 1 a, 1 b, Table 3, FIG. 6 c). ORF expressing cells treated with 1 μM PLX4720 were screened for viability relative to untreated cells and normalized to an assay-specific positive control, MEK1S218/222D (MEK1DD) (Emery, C. M. et al. Proc. Natl. Acad. Sci. USA 106, 20411-20416 (2009).) (Table 4 and summarized in FIG. 5 ). Nine ORFs conferred resistance at levels exceeding two standard deviations from the mean ( FIG. 1 b and Table 4) and were selected for follow-up analysis ( FIG. 7 ). Three of nine candidate ORFs were receptor tyrosine kinases, underscoring the potential of this class of kinases to engage resistance pathways. Resistance effects were validated and prioritized across a multi-point PLX4720 drug concentration scale in the B-RAFV600E cell lines A375 and SKMEL28. The Ser/Thr MAP kinase kinase kinases (MAP3Ks) MAP3K8 (COT/Tpl2) and RAF1 (C-RAF) emerged as top candidates from both cell lines; these ORFs shifted the PLX4720 GI50 by 10-600 fold without affecting viability (Table 5 and FIGS. 8 and 9 ). CRKL, an ORF that shifted the PLX4720 GI50 to a lesser extent (9.7 fold in SKMEL28 cells; FIG. 8 ), encodes an adapter protein phosphorylated by tyrosine kinases such as BCR-ABL (Birge, R. B. et al., Cell Commun Signal 7, 13 (2009)), but lacks intrinsic kinase activity. COT and C-RAF reduced sensitivity to PLX4720 in multiple B-RAFV600E cell lines ( FIG. 1 c) confirming the ability of these kinases to mediate resistance to RAF inhibition. A secondary screen in A375 and SKMEL28 prioritizes the top 9 candidate ORFs across a multipoint PLX4720 concentration scale ( FIG. 1 d).
Interestingly, the top two validated kinases are both Ser/Thr MAP kinase kinase kinases (MAP3Ks) known to activate MEK/ERK signaling in several contexts. Like B-RAF, C-RAF is a MAP3K in the canonical MAPK cascade (McKay, M. M. and Morrison, D. K. Oncogene 26, 3113-3121 (2007)) that was previously implicated in resistance associated with stepwise selection in vitro using a pan-RAF inhibitor (Montagut, C. et al. Cancer Res 68, 4853-4861 (2008)). COT (the protein product of the human MAP3K8 gene) is best characterized as the MAP3K (Salmeron, A. et al. EMBO J. 15, 817-826 (1996)) downstream of NFKB signaling in inflammatory cells (Banerjee, A. et al., Proc Natl Acad Sci U.S.A. 103, 3274-3279 (2006)); however, its functional importance in human cancer has not previously been elucidated.
Whether the overexpression of these genes was sufficient to activate the MAPK pathway was also tested. At baseline, COT expression increased ERK phosphorylation in a manner comparable to MEK1DD, consistent with MAP kinase pathway activation ( FIGS. 2 a and 10). Overexpression of wild-type COT or C-RAF resulted in constitutive phosphorylation of ERK and MEK in the presence of PLX4720, whereas kinase-dead derivatives had no effect ( FIGS. 2 a and 11). Thus, COT and C-RAF drive resistance to RAF inhibition predominantly through re-activation of MAPK signaling. Notably, of the nine candidate ORFs from the initial screen, a subset (3) did not show persistent ERK/MEK phosphorylation following RAF inhibition, suggesting MAPK pathway-independent alteration of drug sensitivity ( FIG. 12 ).
C-RAF activation and heterodimerization with B-RAF constitute critical components of the cellular response to B-RAF inhibition. In A375 cells, endogenous C-RAF: B-RAF heterodimers were measurable and inducible following treatment with PLX4720 ( FIG. 13 ). However, endogenous C-RAF phosphorylation at S338âan event required for C-RAF activationâremained low ( FIG. 13 ). In contrast, ectopically expressed C-RAF was phosphorylated on S338 ( FIG. 13 ) and its PLX4720 resistance phenotype was associated with sustained MEK/ERK activation ( FIGS. 2 a and 13). Moreover, ectopic expression of a high-activity C-RAF truncation mutant (C-RAF(W22) was more effective than wild-type C-RAF in mediating PLX4720 resistance and ERK activation ( FIG. 14 ), further indicating that elevated C-RAF activity directs resistance to this agent. Consistent with this model, oncogenic alleles of NRAS and KRAS conferred PLX4720 resistance in A375 cells ( FIG. 2 b) and yielded sustained C-RAF(S338) and ERK phosphorylation in the context of drug treatment ( FIG. 2 c). Thus, although genetic alterations that engender C-RAF activation (e.g., oncogenic RAS mutations) tend to show mutual exclusivity with B-RAFV600E mutation, such co-occurring events are favored in the context of acquired resistance to B-RAF inhibition.
While C-RAF has been linked previously to melanoma and MAPK pathway dependencies (Montagut, C. et al. 2008; Karreth, F. A., DeNicola, G. M. et al., 2009; Dumaz, N. et al. Cancer Res 66, 9483-9491 (2006); Hatzivassiliou, G. et al. Nature (2010); Heidorn, S. J. et al., Cell 140, 209-221 (2010); Poulikakos, P. I. et al., Nature (2010)), COT has not been described as a melanoma-associated kinase.
The role of COT in melanoma was investigated, and its expression in human melanocytes was examined. Primary immortalized melanocytes (B-RAF wild-type) expressed COT ( FIG. 2 d), although ectopic B-RAFV600E expression reduced COT mRNA levels ( FIG. 15 ) and rendered COT protein undetectable ( FIG. 2 d). Conversely, whereas ectopically expressed COT was only weakly detectable in A375 cells ( FIGS. 2 a, 2 e), shRNA-mediated depletion of endogenous B-RAFV600E caused an increase in COT protein levels that correlated with the extent of B-RAF knockdown ( FIG. 2 e). Moreover, treatment of COT-expressing A375 cells with PLX4720 led to a dose-dependent increase in COT protein ( FIG. 2 a) without affecting ectopic COT mRNA levels ( FIG. 15 ). Oncogenic B-RAF antagonizes COT expression largely through altered protein stability ( FIGS. 2 a, d, e, and 15), and B-RAF inhibition potentiates the outgrowth of COT-expressing cells during the course of treatment. Notably, neither C-RAF nor B-RAF alone or in combination was required for ERK phosphorylation in the context of COT expression, even in the presence of PLX4720 ( FIGS. 2 e, 2 f and FIG. 16 ). As shown, COT expression is sufficient to induce MAP kinase pathway activation in a RAF-independent manner.
Whether cell lines expressing elevated COT in a B-RAFV600E background exhibit de novo resistance to PLX4720 treatment was tested. To identify such instances, a panel of cell lines was screened for evidence of MAP3K8/COT copy number gains coincident with the B-RAFV600E mutation. Of 534 cell lines that had undergone copy number analysis and mutation profiling, 38 cell lines (7.1%) contained the B-RAFV600E mutation. Within this subgroup, two cell linesâOUMS-23 (colon cancer) and RPMI-7951 (melanoma)âalso showed evidence of chromosomal copy gains spanning the MAP3K8/COT locus ( FIGS. 3 a and 17) and robust COT protein expression ( FIGS. 3 b and 18). A panel of melanoma short-term cultures was also screened for COT protein expression. One of these lines expressed COT: M307, a short-term culture derived from a B-RAFV600E tumor that developed resistance to allosteric MEK inhibition following initial disease stabilization ( FIG. 3 c). All three cell lines were refractory to PLX4720 treatment, exhibiting GI50 values in the range of 8-10 μM ( FIG. 3 d) and showing sustained ERK phosphorylation in the context of B-RAF inhibition ( FIGS. 3 e, 3 f). OUMS-23 and RPMI-7951 are MAPK pathway inhibitor-naïve cell lines; thus, these results demonstrate that COT confers de novo resistance to RAF inhibition (a phenomenon observed in Ë10% of B-RAFV600E melanomas).
COT expression in the context of resistance to the clinical RAF inhibitor PLX4032 was examined by obtaining biopsy material from 3 patients with metastatic, B-RAFV600E melanoma. Each case consisted of frozen, lesion-matched biopsy material obtained prior to and during treatment (âpre-treatmentâ and âon-treatmentâ; FIG. 3 g, Table 6); additionally, one sample contained two independent biopsy specimens from the same relapsing tumor site (âpost-relapseâ; FIG. 3 g). Consistent with the experimental models presented above, quantitative real-time RT-PCR (qRT/PCR) analysis revealed increased COT mRNA expression concurrent with PLX4032 treatment in 2 of 3 cases. COT mRNA levels were further increased in a relapsing specimen relative to its pre-treatment and on-treatment counterparts ( FIG. 3 g, Patient #1). An additional, unmatched relapsed malignant melanoma biopsy showed elevated COT mRNA expression comparable to levels observed in RAF inhibitor-resistant, COT-amplified cell lines ( FIG. 19 ). This specimen also exhibited robust MAPK pathway activation and elevated expression of B-RAF, C-RAF and COT relative to matched normal skin or B-RAFV600E cell lines ( FIG. 19 ). Sequencing studies of this tumor revealed no additional mutations in BRAF, NRAS or KRAS (data not shown). These analyses provided clinical evidence that COT-dependent mechanisms are operant in PLX4032-resistant malignant melanomas.
Whether COT actively regulates MEK/ERK phosphorylation in B-RAFV600E cells that harbor naturally elevated COT expression was tested by introducing shRNA constructs targeting COT into RPMI-7951 cells. Depletion of COT suppressed RPMI-7951 viability ( FIG. 20 ) and decreased ERK phosphorylation ( FIG. 3 h); thus, targeting COT kinase activity suppresses MEK/ERK phosphorylation in cancer cells with COT overexpression or amplification. Additionally, the targeting COT kinase activity in the presence of a B-RAF inhibitor (PLX4720) suppresses MEK/IRK phosphorylation ( FIG. 3 h). Treatment of RPMI-7951 cells with a small molecule COT kinase inhibitor (Wyeth, Abbot compound ID 9549300) (George, D. et al., Bioorg. Med. Chem. Lett. 18, 4952-4955 (2008); Hirata, K. et al., Biol. Pharm. Bull. 33, 133-137 (2010); Lee, K. M. et al., Cancer Res. 69, 8043-8049 (2009)) resulted in dose-dependent suppression of MEK and ERK phosphorylation, providing additional evidence that COT contributes to MEK/ERK activation in these cells ( FIG. 3 i).
Whether COT-expressing cancer cells remain sensitive to MAPK pathway inhibition at a target downstream of COT or RAF was analyzed. The OUMS-23 and RPMI-7951 cell lines were queried for sensitivity to the MEK1/2 inhibitor CI-1040. Both cell lines were refractory to MEK inhibition ( FIG. 4 a) and displayed sustained ERK phosphorylation even at 1 μM CI-1040 ( FIG. 4 b). Ectopic COT expression in A375 and SKMEL28 cells also conferred decreased sensitivity to the MEK inhibitors CI-1040 and AZD6244, suggesting that COT expression alone was sufficient to induce this phenotype ( FIGS. 4 c, 4 d and 21). Similar to results observed with pharmacological MEK inhibitors, MEK1/2 knockdown only modestly suppressed COT-mediated ERK phosphorylation in A375 cells ( FIG. 22 ). These data demonstrate that COT activates ERK through MEK-independent and MEK-dependent mechanisms. Furthermore, an in vitro kinase assay using recombinant COT and ERK1 was performed, and it was demonstrated that recombinant COT induced pThr202/Tyr204 phosphorylation of ERK1 in vitro ( FIG. 22 ). Thus, COT expression potentiates ERK activation in a MEK-independent manner.
The use of RAF and MEK inhibitors in combination can override resistance to single-agents as shown in FIG. 23 . It was tested whether the combined RAF/MEK inhibition might circumvent COT-driven resistance. In the setting of ectopic COT expression, exposure to AZD6244 or CI-1040 in combination with PLX470 (1 μM each) reduced cell growth and pERK expression more effectively than did single-agent PLX4720, even at concentrations of 10 μM ( FIGS. 4 e, 4 f and 23). These data underscore the importance of this pathway in B-RAFV600E tumor cells and demonstrate that dual B-RAF/MEK inhibition helps circumvent resistance to RAF inhibitors.
Methods
Center for Cancer Systems Biology (CCSB)/Broad Institute Kinase Open Reading Frame Collection
A library of 597 kinase ORFs in pDONR-223 Entry vectors (Invitrogen) was assembled. Individual clones were end-sequenced using vector-specific primers in both directions. Clones with substantial deviations from reported sequences were discarded. Entry clones and sequences are available via Addgene (http://www.addgene.org/human_kinases). Kinase ORFs were assembled from multiple sources; 337 kinases were isolated as single clones from the ORFeome 5.1 collection (http://horfdb.dfci.harvard.edu), 183 kinases were cloned from normal human tissue RNA (Ambion) by reverse transcription and subsequent PCR amplification to add Gateway sequences (Invitrogen), 64 kinases were cloned from templates provided by the Harvard Institute of Proteomics (HIP), and 13 kinases were cloned into the Gateway system from templates obtained from collaborating laboratories. The Gateway-compatible lentiviral vector pLX-Blast-V5 was created from the pLKO.1 backbone. LR Clonase enzymatic recombination reactions were performed to introduce the 597 kinases into pLX-Blast-V5 according to the manufacturer's protocol (Invitrogen).
High Throughput ORF Screening
A375 melanoma cells were plated in 384-well microtiter plates (500 cells per well). The following day, cells were spin-infected with the lentivirally-packaged kinase ORF library in the presence of 8 ug/ml polybrene. 48 hours post-infection, media was replaced with standard growth media (2 replicates), media containing 1 μM PLX4720 (2 replicates, 2 time points) or media containing 10 ug/ml blasticidin (2 replicates). After four days and 6 days, cell growth was assayed using Cell Titer-Glo (Promega) according to manufacturer instructions. The entire experiment was performed twice.
Identification of Candidate Resistance ORFs
Raw luminescence values were imported into Microsoft Excel. Infection efficiency was determined by the percentage of duplicate-averaged raw luminescence in blasticidin selected cells relative to non-selected cells. ORFs with an infection efficiency of less than 0.70 were excluded from further analysis along with any ORF having a standard deviation of >15,000 raw luminescence units between duplicates. To identify ORFs whose expression affects proliferation, we compared the duplicate-averaged raw luminescence of individual ORFs against the average and standard deviation of all control-treated cells via the z-score, or standard score, below,
Z = Ï - μ Ï
where x=average raw luminescence of a given ORF, μ=the mean raw luminescence of all ORFs and Ï=the standard deviation of the raw luminescence of all wells. Any individual ORF with a z-score >+2 or <â2 was annotated as affecting proliferation and removed from final analysis. Differential proliferation was determined by the percentage of duplicate-averaged raw luminescence values in PLX4720 (1 μM) treated cells relative to untreated cells. Subsequently, differential proliferation was normalized to the positive control for PLX4720 resistance, MEK1s218/222D (MEK1DD), with MEK1DD differential proliferation=1.0. MEK1DD normalized differential proliferation for each individual ORF was averaged across two duplicate experiments, with two time points for each experiment (day 4 and day 6). A z-score was then generated, as described above for average MEK1DD normalized differential proliferation. ORFs with a z-score of >2 were considered hits and were followed up in the secondary screen.
ORF and shRNA Expression
ORFs were expressed from pLX-Blast-V5 (lentiviral) or pWZL-Blast, pBABE-Puro or pBABE-zeocin (retroviral) expression plasmids. For lentiviral transduction, 293T cells were transfected with 1 μg of pLX-Blast-V5-ORF or pLKO.1-shRNA, 900 ng Î8.9 (gag, pol) and 100 ng VSV-G using 6 μl Fugene6 transfection reagent (Roche). Viral supernatant was harvested 72 h post-transfection. Mammalian cells were infected at a 1:10-1:20 dilution of virus in 6-well plates in the presence of 5 μg/ml polybrene and centrifuged at 2250 RPM for 1 h at 37° C. Twenty-four hours after infection blasticidin (pLX-Blast-V5, 10 μg/ml) or puro (pLKO.1, 0.75 μg/ml) was added and cells were selected for 48 hrs. For retrovirus production, 293T were transfected with 1 μg of retroviral plasmid-ORF, 1 μg pCL-AMPHO and 100 ng VSV-G, as described above. Cells were infected with retrovirus containing supernatant at a 1:2 dilution in 5 μg/ml polybrene overnight, followed by media change to growth medium. Infection was repeated once more (twice total), followed by selection, above.
Secondary Screen
A375 (1.5Ã103) and SKMEL28 cells (3Ã103) were seeded in 96-well plates for 18 h. ORF-expressing lentivirus was added at a 1:10 dilution in the presence of 8 μg/ml polybrene, and centrifuged at 2250 RPM and 37° C. for 1 h. Following centrifugation, virus-containing media was changed to normal growth media and allowed to incubate for 18 h. Twenty-four hours after infection, DMSO (1:1000) or 10ÃPLX4720 (in DMSO) was added to a final concentration of 100, 10, 1, 0.1, 0.01, 0.001, 0.0001 or 0.00001 μM. Cell viability was assayed using WST-1 (Roche), per manufacturer recommendation, 4 days after the addition of PLX4720.
Cell Lines and Reagents
A375, SKMEL28, SKMEL30, COLO-679, WM451lu, SKMEL5, Malme 3M, SKMEL30, WM3627, WM1976, WM3163, WM3130, WM3629, WM3453, WM3682 and WM3702 were all grown in RPMI (Cellgro), 10% FBS and 1% penicillin/streptomycin. M307 was grown in RPMI (Cellgro), 10% FBS and 1% penicillin/streptomycin supplemented with 1 mM sodium pyruvate. 293T and OUMS-23 were grown in DMEM (Cellgro), 10% FBS and 1% penicillin/streptomycin. RPMI-7951 cells (ATCC) were grown in MEM (Cellgro), 10% FBS and 1% penicillin/streptomycin. Wild-type primary melanocytes were grown in HAM's F10 (Cellgro), 10% FBS and 1% penicillin/streptomycin. B-RAFV600E-expressing primary melanocytes were grown in TIVA media [Ham's F-10 (Cellgro), 7% FBS, 1% penicillin/streptomycin, 2 mM glutamine (Cellgro), 100 uM IBMX, 50 ng/ml TPA, 1 mM dbcAMP (Sigma) and 1 μM sodium vanadate]. CI-1040 (PubChem ID: 6918454) was purchased from Shanghai Lechen International Trading Co., AZD6244 (PubChem ID: 10127622) from Selleck Chemicals, and PLX4720 (PubChem ID: 24180719) from Symansis. RAF265 (PubChem ID: 11656518) was a generous gift from Novartis Pharma AG. Unless otherwise indicated, all drug treatments were for 16 h. Activated alleles of NRAS and KRAS have been previously described. (Boehm, J. S. et al. Cell 129, 1065-1079 (2007); Lundberg, A. S. et al. Oncogene 21, 4577-4586 (2002)).
Pharmacologic Growth Inhibition Assays
Cultured cells were seeded into 96-well plates (3,000 cells per well) for all melanoma cell lines; 1,500 cells were seeded for A375. Twenty-four hours after seeding, serial dilutions of the relevant compound were prepared in DMSO added to cells, yielding final drug concentrations ranging from 100 μM to 1Ã105 μM, with the final volume of DMSO not exceeding 1%. Cells were incubated for 96 h following addition of drug. Cell viability was measured using the WST1 viability assay (Roche). Viability was calculated as a percentage of control (untreated cells) after background subtraction. A minimum of six replicates were performed for each cell line and drug combination. Data from growth-inhibition assays were modeled using a nonlinear regression curve fit with a sigmoid dose-response. These curves were displayed and GI50 generated using GraphPad Prism 5 for Windows (GraphPad). Sigmoid-response curves that crossed the 50% inhibition point at or above 10 μM have GI50 values annotated as >10 μM. For single-dose studies, the identical protocol was followed, using a single dose of indicated drug (1 μM unless otherwise noted).
Immunoblots and Immunoprecipitations
Cells were washed twice with ice-cold PBS and lysed with 1% NP-40 buffer [150 mM NaCl, 50 mM Tris pH 7.5, 2 mM EDTA pH 8, 25 mM NaF and 1% NP-40] containing 2à protease inhibitors (Roche) and 1à Phosphatase Inhibitor Cocktails I and II (CalBioChem). Lysates were quantified (Bradford assay), normalized, reduced, denatured (95° C.) and resolved by SDS gel electrophoresis on 10% Tris/Glycine gels (Invitrogen). Protein was transferred to PVDF membranes and probed with primary antibodies recognizing pERK1/2 (T202/Y204), pMEK1/2 (S217/221), MEK1/2, MEK1, MEK2, C-RAF (rabbit host), pC-RAF (pS338) (Cell Signaling Technology; 1:1,000), V5-HRP (Invitrogen; (1:5,000), COT (1:500), B-RAF (1:2,000), Actin (1:1,000), Actin-HRP (1:1,000; Santa Cruz)), C-RAF (mouse host; 1:1,000; BD Transduction Labs), Vinculin (Sigma; 1:20,000), AXL (1:500; R&D Systems). After incubation with the appropriate secondary antibody (anti-rabbit, anti-mouse IgG, HRP-linked; 1:1,000 dilution, Cell Signaling Technology or anti-goat IgG, HRP-linked; 1:1,000 dilution; Santa Cruz), proteins were detected using chemiluminescence (Pierce). Immunoprecipitations were performed overnight at 4° C. in 1% NP-40 lysis buffer, as described above, at a concentration of 1 μg/μl total protein using an antibody recognizing C-RAF (1:50; Cell Signaling Technology). Antibody: antigen complexes were bound to Protein A agarose (25 μL, 50% slurry; Pierce) for 2 hrs. at 4° C. Beads were centrifuged and washed three times in lysis buffer and eluted and denatured (95° C.) in 2à reduced sample buffer (Invitrogen). Immunoblots were performed as above. Phospho-protein quantification was performed using NIH Image J.
Lysates from tumor and matched normal skin were generated by mechanical homogenization of tissue in RIPA [50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1.0% NaDOC, 1.0% Triton X-100, 25 mM NaF, 1 mM NA3VO4] containing protease and phosphatase inhibitors, as above. Subsequent normalization and immunoblots were performed as above.
Biopsied Melanoma Tumour Material
Biopsied tumor material consisted of discarded and de-identified tissue that was obtained with informed consent and characterized under protocol 02-017 (paired samples, Massachusetts General Hospital) and 07-087 (unpaired sample, Dana-Farber Cancer Institute). For paired specimens, âon-treatmentâ samples were collected 10-14 days after initiation of PLX4032 treatment (Table 6).
Inhibition of COT Kinase Activity
Adherent RPMI-7951 cells were washed twice with 1ÃPBS and incubated overnight in serum-free growth media. Subsequently, 4-(3-Chloro-4-fluorophenylamino)-6-(pyridin-3-yl-methylamino)-3-cyano-[1,7]-naphthyridine (EMD; TPL2 inhibitor I; Cat#: 616373, PubChem ID: 9549300), suspended in DMSO at the indicated concentration, was added to cells for 1 hour, after which protein extracts were made as described above.
Quantitative RT-PCR
mRNA was extracted from cell lines and fresh-frozen tumors using the RNeasy kit (Qiagen). Total mRNA was used for subsequent reverse transcription using the SuperScript III First-Strand Synthesis SuperMix (Invitrogen) for cell lines and unpaired tumor samples, and the SuperScript VILO cDNA synthesis kit (Invitrogen) for paired frozen tumor samples. 5 μl of the RT reaction was used for quantitative PCR using SYBR Green PCR Master Mix and gene-specific primers, in triplicate, using an ABI 7300 Real Time PCR System. Primers used for detection are as follows:
In Vitro Kinase Assay
In vitro kinase assays were performed as previously described using 1 μg each of COT (amino acids 30-397, R&D Systems) and inactive ERK1 (Millipore).
Cellular Viability Assays
Adherent RPMI-7951 cells were infected with virus expressing shRNAs against COT or Luciferase as described above. Following selection, cells were plated (1.5Ã105 cells/well) onto a 24-well plate in quadruplicate. Viable cells were counted via trypan blue exclusion using a VI-CELL Cell Viability Analyzer, per manufacturer's specifications. Quadruplicate cell counts were averaged and normalized relative to that of the control shRNA.
The Cancer Cell Line Encyclopedia (CCLE)
The Cancer Cell Line Encyclopedia (COLE) project is a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research (NIBR) and the Genomics Institute of the Novartis Research Foundation (GNF) to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models, to develop integrated computational analyses that link distinct pharmacologic vulnerabilities to genomic patterns and to translate cell line integrative genomics into cancer patient stratification. Chromosomal copy number and gene expression data used for this study are available online at http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi.
Expression Profiling of Cancer Cell Lines
Oligonucleotide microarray analysis was carried out using the GeneChip Human Genome U133 Plus 2.0 Affymetrix expression array (Affymetrix). Samples were converted to labeled, fragmented, cRNA following the Affymetrix protocol for use on the expression microarray.
shRNA Constructs Used (pLKO.1)
The DNA sequences for preparing the shRNA constructs used were as follows:
The definitions and disclosures provided herein govern and supersede all others incorporated by reference. Although the invention herein has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, modifications, substitutions, and deletions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims. It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
. A method of identifying a subject having cancer who is likely to benefit from treatment with a combination therapy with a RAF inhibitor and a second inhibitor, comprising:
(a) assaying a gene copy number, a mRNA or a protein level or phosphorylation of one or more kinase targets selected from the group consisting of MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3) in cancer cells obtained from the subject and comparing the gene copy number, the mRNA or the protein level or the phoshorylation with a gene copy number, a mRNA or a protein level or phosphorylation of the target kinase in cells obtained from a subject without the cancer;
(b) correlating increased gene copy number or an alteration in mRNA expression or protein overexpression or phosphorylation of the target kinase in the cancer cells relative to the cells from the subject without the cancer with the subject having the cancer who is likely to benefit from treatment with the combination therapy; and
(c) selecting the subject having increased gene copy number or an alteration in mRNA expression or protein overexpression or phosphorylation of the target kinase in the cancer cells for treatment with the combination therapy.
2. The method of claim 1 , further comprising (c) assaying a nucleic acid sample obtained from the cancer cells for the presence of a mutation in a nucleic acid molecule encoding a B-RAF polypeptide with a mutation at about amino acid position 600 and (d) correlating the presence of the mutation in the nucleic acid molecule encoding the B-RAF polypeptide with a subject who is likely to benefit from treatment with the combination therapy.
3. The method of claim 1 , comprising correlating the presence of a Valine to Glutamic Acid mutation at about amino acid position 600 (V600E) in a nucleic acid molecule encoding B-RAF with a subject who is likely to benefit from treatment with the combination therapy.
4. The method of claim 1 , comprising assaying the gene copy number, the mRNA or the protein level of MAP3K8 (TPL/COT).
5. The method of claim 1 , comprising assaying phosphorylation of C-RAF at amino acid S338.
6. The method of claim 1 , wherein the second inhibitor is a MEK inhibitor, a CRAF inhibitor, a CrkL inhibitor or a TPL2/COT inhibitor.
7. The method of claim 1 , wherein the RAF inhibitor is a B-RAF inhibitor or a pan-RAF inhibitor.
8. The method of claim 1 , wherein the RAF inhibitor is selected from the group consisting of RAF265, sorafenib, SB590885, PLX 4720, PLX4032, GDC-0879 and ZM 336372.
9. The method of claim 1 , wherein the subject has innate resistance to the RAF inhibitor or is likely to develop resistance to the RAF inhibitor.
10. The method of claim 1 , wherein the cancer is selected from the group consisting of melanoma, breast cancer, colorectal cancers, glioma, lung cancer, ovarian cancer, sarcoma and thyroid cancer.
11. The method of claim 10 , wherein the cancer is melanoma.
12. A method of treating cancer in a subject in need thereof, comprising administering to the subject an effective amount of a RAF inhibitor and an effective amount of a second inhibitor, wherein the second inhibitor is a MEK inhibitor, or a MAP3K8 (TPL2/COT) inhibitor.
13. The method of claim 12 , wherein the subject has cancer cells comprising a BRAF mutation or a B-RAFV600E mutation.
15. The method of
claim 12, further comprising assaying a gene copy number, a mRNA or a protein level or phosphorylation of one or more kinase targets selected from the group consisting of MAP3K8 (TPL2/COT), RAF1 (CRAF), CRKL (CrkL), FGR (Fgr), PRKCE (Prkce), PRKCH (Prkch), ERBB2 (ErbB2), AXL (Axl), or PAK3 (Pak3) in cancer cells obtained from the subject and comparing the gene copy number, the mRNA or the protein level or the phoshorylation with a gene copy number, a mRNA or a protein level or phosphorylation of the target kinase in cells obtained from a subject without the cancer; and
administering to the subject the effective amount of a RAF inhibitor and the effective amount of a second inhibitor in subjects having an increased gene copy number or an alteration in mRNA expression or protein overexpression or phosphorylation of the target kinase in the cancer cells.
16. The method of claim 12 , wherein the RAF inhibitor is selected from the group consisting of RAF265, sorafenib, SB590885, PLX 4720, PLX4032, GDC-0879 and ZM 336372.
17. The method of claim 12 , wherein the MEK inhibitor is selected from the group consisting of CI-1040/PD184352, AZD6244, PD318088, PD98059, PD334581, RDEA119, 6-Methoxy-7-(3-morpholin-4-yl-propoxy)-4-(4-phenoxy-phenylamino)-quinoline-3-carbonitrile and 4-[3-Chloro-4-(1-methyl-1H-imidazol-2-ylsulfanyl)-phenylamino]-6-methoxy-7-(3-morpholin-4-yl-propoxy)-quinoline-3-carbonitrile.
18. The method of claim 12 , wherein the subject has innate resistance to the RAF inhibitor or the MEK inhibitor or is likely to develop resistance to the RAF inhibitor or the MEK inhibitor.
19. The method of claim 12 , wherein the cancer is selected from the group consisting of melanoma, breast cancer, colorectal cancers, glioma, lung cancer, ovarian cancer, sarcoma and thyroid cancer.
20. The method of claim 12 , wherein the cancer is melanoma.
22. The method of claim 12 , wherein the second inhibitor is a MAP3K8 (TPL2/COT) inhibitor.
23. A method of identifying a kinase target that confers resistance to a first inhibitor, the method comprising:
culturing cells having sensitivity to the first inhibitor;
expressing a plurality of kinase ORF clones in the cell cultures, each cell culture expressing a different kinase ORF clone;
exposing each cell culture to the inhibitor;
identifying cell cultures having greater viability than a control cell culture after exposure to the inhibitor to identify one or more kinase ORF clones that confers resistance to the first inhibitor.
24. The method of claim 23 , wherein the cultured cells have sensitivity to a RAF inhibitor or a MEK inhibitor.
26. The method of claim 23 , wherein the cultured cells comprise a B-RAF mutation or a B-RAFV600E mutation.
28. The method of claim 23 , wherein the cultured cells comprise a melanoma cell line.
29. The method of claim 23 , comprising providing the plurality of kinase ORF clones in a lentiviral vector or a retroviral vector.
US13/583,056 2010-03-09 2011-03-09 Methods of Diagnosing and Treating Cancer in Patients Having or Developing Resistance to a First Cancer Therapy Abandoned US20130059851A1 (en) Priority Applications (1) Application Number Priority Date Filing Date Title US13/583,056 US20130059851A1 (en) 2010-03-09 2011-03-09 Methods of Diagnosing and Treating Cancer in Patients Having or Developing Resistance to a First Cancer Therapy Applications Claiming Priority (6) Application Number Priority Date Filing Date Title US31219310P 2010-03-09 2010-03-09 US31251910P 2010-03-10 2010-03-10 US32602110P 2010-04-20 2010-04-20 US41556910P 2010-11-19 2010-11-19 PCT/US2011/027689 WO2011112678A1 (en) 2010-03-09 2011-03-09 Methods of diagnosing and treating cancer in patients having or developing resistance to a first cancer therapy US13/583,056 US20130059851A1 (en) 2010-03-09 2011-03-09 Methods of Diagnosing and Treating Cancer in Patients Having or Developing Resistance to a First Cancer Therapy Related Parent Applications (1) Application Number Title Priority Date Filing Date PCT/US2011/027689 A-371-Of-International WO2011112678A1 (en) 2010-03-09 2011-03-09 Methods of diagnosing and treating cancer in patients having or developing resistance to a first cancer therapy Related Child Applications (1) Application Number Title Priority Date Filing Date US15/480,126 Division US11078540B2 (en) 2010-03-09 2017-04-05 Methods of diagnosing and treating cancer in patients having or developing resistance to a first cancer therapy Publications (1) Family ID=43837946 Family Applications (3) Application Number Title Priority Date Filing Date US13/583,056 Abandoned US20130059851A1 (en) 2010-03-09 2011-03-09 Methods of Diagnosing and Treating Cancer in Patients Having or Developing Resistance to a First Cancer Therapy US15/480,126 Active 2032-08-21 US11078540B2 (en) 2010-03-09 2017-04-05 Methods of diagnosing and treating cancer in patients having or developing resistance to a first cancer therapy US17/357,642 Pending US20210404014A1 (en) 2010-03-09 2021-06-24 Methods of diagnosing and treating cancer in patients having or developing resistance to a first cancer therapy Family Applications After (2) Application Number Title Priority Date Filing Date US15/480,126 Active 2032-08-21 US11078540B2 (en) 2010-03-09 2017-04-05 Methods of diagnosing and treating cancer in patients having or developing resistance to a first cancer therapy US17/357,642 Pending US20210404014A1 (en) 2010-03-09 2021-06-24 Methods of diagnosing and treating cancer in patients having or developing resistance to a first cancer therapy Country Status (12) Cited By (11) * Cited by examiner, â Cited by third party Publication number Priority date Publication date Assignee Title WO2014150671A1 (en) * 2013-03-15 2014-09-25 The Broad Institute, Inc. Methods of identifying responses to map kinase inhibition therapy WO2014204261A1 (en) * 2013-06-21 2014-12-24 ì¬íë³µì§ë²ì¸ ì¼ì±ìëª ê³µìµì¬ë¨ Pharmaceutical composition containing tp12 expression inhibitor or activity inhibitor as active ingredient for preventing or treating renal cell cancer WO2016041932A1 (en) * 2014-09-17 2016-03-24 Institut Curie Map3k8 as a marker for selecting a patient affected with an ovarian cancer for a treatment with a mek inhibitor US9763923B2 (en) 2015-04-30 2017-09-19 Samsung Electronics Co., Ltd. Composition for reducing senescence of cell or subject including BRAF inhibitor and use thereof WO2018027223A1 (en) * 2016-08-05 2018-02-08 Duke University Camkk2 inhibitor compositions and methods of using the same WO2020097396A1 (en) * 2018-11-07 2020-05-14 Dana-Farber Cancer Institute, Inc. Benzimidazole derivatives and aza-benzimidazole derivatives as janus kinase 2 inhibitors and uses thereof US11087354B2 (en) 2012-08-17 2021-08-10 Genentech, Inc. Combination therapies US11691963B2 (en) 2020-05-06 2023-07-04 Ajax Therapeutics, Inc. 6-heteroaryloxy benzimidazoles and azabenzimidazoles as JAK2 inhibitors US11970494B2 (en) 2021-11-09 2024-04-30 Ajax Therapeutics, Inc. 6-heteroaryloxy benzimidazoles and azabenzimidazoles as JAK2 inhibitors US12043632B2 (en) 2020-12-23 2024-07-23 Ajax Therapeutics, Inc. 6-heteroaryloxy benzimidazoles and azabenzimidazoles as JAK2 inhibitors US12162881B2 (en) 2021-11-09 2024-12-10 Ajax Therapeutics, Inc. Forms and compositions of inhibitors of JAK2 Families Citing this family (27) * Cited by examiner, â Cited by third party Publication number Priority date Publication date Assignee Title US7723477B2 (en) 2005-10-31 2010-05-25 Oncomed Pharmaceuticals, Inc. Compositions and methods for inhibiting Wnt-dependent solid tumor cell growth JP5792621B2 (en) 2008-09-26 2015-10-14 ãªã³ã³ã¡ãã ãã¡ã¼ãã·ã¥ã¼ãã£ã«ã«ãº ã¤ã³ã³ã¼ãã¬ã¤ããã Frizzled binders and uses thereof TWI535445B (en) 2010-01-12 2016-06-01 å®å¯ç¾å¾·è¥ç©è¡ä»½æéå ¬å¸ Wnt antagonists and methods of treatment and screening AU2011235904B2 (en) 2010-04-01 2015-10-08 Oncomed Pharmaceuticals, Inc. Frizzled-binding agents and uses thereof WO2012138783A2 (en) * 2011-04-04 2012-10-11 Netherlands Cancer Institute Methods and compositions for predicting resistance to anticancer treatment WO2013067050A1 (en) * 2011-10-31 2013-05-10 University Of Utah Research Foundation Genetic alterations in glioblastoma JP2015502958A (en) * 2011-12-09 2015-01-29 ãªã³ã³ã¡ãã ãã¡ã¼ãã·ã¥ã¼ãã£ã«ã«ãº ã¤ã³ã³ã¼ãã¬ã¤ããã Combination therapy for the treatment of cancer EA028135B1 (en) 2012-03-28 2017-10-31 Ðана-ФаÑÐ±ÐµÑ ÐÑнÑÐµÑ ÐнÑÑиÑÑÑÑ, Ðнк. C-raf mutants that confer resistance to raf inhibitors WO2014066328A1 (en) 2012-10-23 2014-05-01 Oncomed Pharmaceuticals, Inc. Methods of treating neuroendocrine tumors using wnt pathway-binding agents US9359444B2 (en) 2013-02-04 2016-06-07 Oncomed Pharmaceuticals Inc. Methods and monitoring of treatment with a Wnt pathway inhibitor US9168300B2 (en) 2013-03-14 2015-10-27 Oncomed Pharmaceuticals, Inc. MET-binding agents and uses thereof SI3456717T1 (en) 2015-07-06 2021-08-31 Gilead Sciences, Inc. 4,6-diamino-quinoline-3-carbonitrile derivative as cancer osaka thyroid (cot) modulator for treating inflammatory disease EA201792612A1 (en) 2015-07-06 2018-07-31 Ðжилид СайÑнÑ, Ðнк. 6-AMINOHINOLIN-3-CARBONITRILES AS COT MODULATORS GB201520178D0 (en) * 2015-11-16 2015-12-30 Univ London Queen Mary Method CN105695616A (en) * 2016-04-22 2016-06-22 çå¬å½ Analysis marker for diagnosing thyroid cancer and application thereof AU2017289158C1 (en) 2016-06-30 2020-07-23 Gilead Sciences, Inc. 4,6-diaminoquinazolines as Cot modulators and methods of use thereof JP7190432B2 (en) * 2016-12-20 2022-12-15 ã¤ã¼ãã£ã¼ã¨ã¤ãã»ãã¥ã¼ãªãã Identification of drugs that target non-genetic drug resistance programs in cancer US10793901B2 (en) * 2016-12-28 2020-10-06 Roche Molecular Systems, Inc. Reversibly protected nucleotide reagents with high thermal stability JP7300394B2 (en) 2017-01-17 2023-06-29 ãããªã¸ã§ããã¯ã¹ ã²ã¼ã¨ã ãã¼ãã¼ Protein kinase inhibition to promote liver regeneration or reduce or prevent hepatocyte death EP3703742A4 (en) * 2017-11-02 2022-03-09 University of Georgia Research Foundation, Inc. METHODS AND COMPOSITIONS RELATED TO INCREASED ROTAVIRUS PRODUCTION CN108872438B (en) * 2018-08-06 2021-01-15 æå·è¿ªç¸å®ä¸æéå ¬å¸ Rapid detection kit for lung cancer marker GK5 in exosome EP3931564A4 (en) * 2019-02-26 2023-04-26 Cell Response, Inc. Methods for treating map3k8 positive cancers TW202235416A (en) 2019-06-14 2022-09-16 ç¾ååºå©ç§å¸è¡ä»½æéå ¬å¸ Cot modulators and methods of use thereof CN110862968A (en) * 2019-10-30 2020-03-06 ä¸å½åä¸ç§å¦é¢å °å·å ½å»ç ç©¶æ Construction method of PK-15 cell line with knockout of MAP3K8 gene and its application US11655237B2 (en) 2020-03-30 2023-05-23 Gilead Sciences, Inc. Solid forms of a Cot inhibitor compound CN119390681A (en) 2020-04-02 2025-02-07 åå©å¾·ç§å¦å ¬å¸ Methods for preparing COT inhibitor compounds US12173039B1 (en) 2021-01-08 2024-12-24 Washington University TPL2 inhibiting agents, uses thereof, and detection of TPL2 Citations (1) * Cited by examiner, â Cited by third party Publication number Priority date Publication date Assignee Title US20090047675A1 (en) * 2007-05-01 2009-02-19 Dana-Farber Cancer Institute, Inc. Compositions and methods for indentifying transforming and tumor suppressor genes Family Cites Families (95) * Cited by examiner, â Cited by third party Publication number Priority date Publication date Assignee Title IL63907A0 (en) 1980-09-24 1981-12-31 Cetus Corp Diagnostic method and antibody probe for use therein DE3381518D1 (en) 1982-01-22 1990-06-07 Cetus Corp METHOD FOR CHARACTERIZING HLA AND THE CDNS TEST AGENTS USED IN IT. US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences CA1284931C (en) 1986-03-13 1991-06-18 Henry A. Erlich Process for detecting specific nucleotide variations and genetic polymorphisms present in nucleic acids CA1338457C (en) 1986-08-22 1996-07-16 Henry A. Erlich Purified thermostable enzyme EP0266032A1 (en) 1986-08-29 1988-05-04 Beecham Group Plc Modified fibrinolytic enzyme US7705215B1 (en) 1990-04-17 2010-04-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof FR2650840B1 (en) 1989-08-11 1991-11-29 Bertin & Cie RAPID DETECTION AND / OR IDENTIFICATION OF A SINGLE BASED ON A NUCLEIC ACID SEQUENCE, AND ITS APPLICATIONS US6004744A (en) 1991-03-05 1999-12-21 Molecular Tool, Inc. Method for determining nucleotide identity through extension of immobilized primer GB9222888D0 (en) 1992-10-30 1992-12-16 British Tech Group Tomography AT404556B (en) 1995-11-23 1998-12-28 Pharma Consult Gmbh Device for tightly sealing a glass or plastic container for admitting liquid pharmaceutical products GB2323845A (en) 1997-03-31 1998-10-07 Merck & Co Inc MEK inhibiting lactones BR9810366A (en) 1997-07-01 2000-08-29 Warner Lambert Co Derivatives of 4-bromo or 4-iodo phenylamino benzhydroxyamide and their use as mek inhibitors ATE344791T1 (en) 1997-07-01 2006-11-15 Warner Lambert Co 2-(4-BROMINE OR 4-IODINE PHENYLAMINO)BENZOIC ACID DERIVATIVES AND THEIR USE AS MEK INHIBITORS US6310060B1 (en) 1998-06-24 2001-10-30 Warner-Lambert Company 2-(4-bromo or 4-iodo phenylamino) benzoic acid derivatives and their use as MEK inhibitors US6821963B2 (en) 1997-07-01 2004-11-23 Warner-Lambert Company 4-Bromo or 4-iodo phenylamino benzhydroxamic acid derivatives and their use as MEK inhibitors US6506798B1 (en) 1997-07-01 2003-01-14 Warner-Lambert Company 4-Arylamino, 4-aryloxy, and 4-arylthio diarylamines and derivatives thereof as selective MEK inhibitors IL143939A0 (en) 1998-12-22 2002-04-21 Warner Lambert Co Combination chemotherapy US20040171632A1 (en) 1998-12-22 2004-09-02 Gowan Richard Carleton Combination chemotherapy JP2000204079A (en) 1999-01-13 2000-07-25 Warner Lambert Co Diarylamine WO2000042003A1 (en) 1999-01-13 2000-07-20 Warner-Lambert Company Benzenesulfonamide derivatives and their use as mek inhibitors JP2000204077A (en) 1999-01-13 2000-07-25 Warner Lambert Co Diarylamine US6455582B1 (en) 1999-01-13 2002-09-24 Warner-Lambert Company Sulohydroxamic acids and sulohyroxamates and their use as MEK inhibitors DE69926914T2 (en) 1999-01-13 2006-06-29 Warner-Lambert Co. Llc 1-HETEROCYCLE SUBSTITUTED DIARYLAMINES JP2000212157A (en) 1999-01-13 2000-08-02 Warner Lambert Co Diarylamine GEP20032922B (en) 1999-01-13 2003-03-25 Warner Lambert Co Benzoheterocycles and Their Use as MEK Inhibitors JP2000204075A (en) 1999-01-13 2000-07-25 Warner Lambert Co Diarylamine CA2348236A1 (en) 1999-01-13 2000-07-20 Stephen Douglas Barrett 4-arylamino, 4-aryloxy, and 4-arylthio diarylamines and derivatives thereof as selective mek inhibitors CN1219753C (en) 2000-07-19 2005-09-21 æ²å°¼å°Â·æä¼¯å ¬å¸ Oxygenated esters of 4-iodo phenylamino benzhydroxamic acids WO2003035626A2 (en) 2001-10-23 2003-05-01 Applied Research Systems Ars Holding N.V. Azole derivatives and pharmaceutical compositions containing them WO2003047523A2 (en) 2001-12-04 2003-06-12 Onyx Pharmaceuticals, Inc. Raf-mek-erk pathway inhibitors to treat cancer AU2002347360A1 (en) 2001-12-05 2003-06-17 Astrazeneca Ab Pharmaceutical compositions comprising benzofuranyl substituted 3-cyanoquinoline derivatives and their use for the treatment of solid tumours WO2003047583A1 (en) 2001-12-05 2003-06-12 Astrazeneca Ab Pharmaceutical compositions comprising benzofuranyl substituted 3-cyanoquinoline derivatives and their use for the treatment of solid tumours DOP2003000556A (en) 2002-01-23 2003-10-31 Warner Lambert Co ESTERES HYDROXAMATE ACID N- (4-PHENYL-REPLACED) -ANTRANILICO. MXPA04005527A (en) 2002-01-23 2005-03-23 Warner Lambert Co N-(4-substituted phenyl)-anthranilic acid hydroxamate esters. TW200406203A (en) 2002-03-13 2004-05-01 Array Biopharma Inc N3 alkylated banzimidazole derivatives as MEK inhibitors US6989451B2 (en) 2002-06-04 2006-01-24 Valeant Research & Development Heterocyclic compounds and uses thereof AU2003238871B2 (en) * 2002-06-05 2009-04-23 Cedars-Sinai Medical Center Method of treating cancer using kinase inhibitors EP1545529A4 (en) 2002-09-30 2010-03-03 Bristol Myers Squibb Co Novel tyrosine kinase inhibitors US20060270643A1 (en) 2002-10-31 2006-11-30 Chawnshang Chang Hyfroxyflutamide induced pathways related to androgen receptor negative prostate cancer cells GB0225579D0 (en) 2002-11-02 2002-12-11 Astrazeneca Ab Chemical compounds WO2004044219A2 (en) 2002-11-12 2004-05-27 Mercury Therapeutics, Inc. Xanthene compounds for cancer chemotherapy US20050004186A1 (en) 2002-12-20 2005-01-06 Pfizer Inc MEK inhibiting compounds JP2006519807A (en) * 2003-03-11 2006-08-31 ããã«ãã£ã¹ ã¢ã¯ãã¨ã³ã²ã¼ã«ã·ã£ãã Use of isoquinoline derivatives for the treatment of cancer and MAP kinase related diseases WO2005000818A1 (en) 2003-06-27 2005-01-06 Warner-Lambert Company Llc 5-substituted-4-`(substituted phenyl)!amino!-2-pyridone deviatives for use as mek inhibitors WO2005007616A1 (en) 2003-07-23 2005-01-27 Warner-Lambert Company Llc Diphenylamino ketone derivatives as mek inhibitors US20050049276A1 (en) 2003-07-23 2005-03-03 Warner-Lambert Company, Llc Imidazopyridines and triazolopyridines EP1651214B1 (en) 2003-07-24 2009-09-16 Warner-Lambert Company LLC Benzimidazole derivatives as mek inhibitors US7538120B2 (en) 2003-09-03 2009-05-26 Array Biopharma Inc. Method of treating inflammatory diseases US7144907B2 (en) 2003-09-03 2006-12-05 Array Biopharma Inc. Heterocyclic inhibitors of MEK and methods of use thereof US8084645B2 (en) 2003-09-19 2011-12-27 Chugai Seiyaku Kabushiki Kaisha 4-phenylamino-benzaldoxime derivatives and uses thereof as mitogen-activated protein kinase kinase (MEK) inhibitors WO2005037273A1 (en) 2003-10-16 2005-04-28 Chiron Corporation Substituted benzazoles and use thereof as inhibitors of raf kinase US7732616B2 (en) 2003-11-19 2010-06-08 Array Biopharma Inc. Dihydropyridine and dihydropyridazine derivatives as inhibitors of MEK and methods of use thereof US7517994B2 (en) 2003-11-19 2009-04-14 Array Biopharma Inc. Heterocyclic inhibitors of MEK and methods of use thereof CA2545659C (en) 2003-11-19 2013-06-04 Array Biopharma Inc. Bicyclic inhibitors of mek TW200529846A (en) 2004-02-20 2005-09-16 Wyeth Corp 3-quinolinecarbonitrile protein kinase inhibitors RS50569B (en) 2004-06-11 2010-05-07 Japan Tobacco Inc. 5-AMINO-2,4,7-TRIOXO-3,4,7,8-TETRAHYDRO-2H-PIRIDO (2,3-D) PYRIMIDINE DERIVATIVES AND SIMILAR CANCER UNITS US7378423B2 (en) 2004-06-11 2008-05-27 Japan Tobacco Inc. Pyrimidine compound and medical use thereof TWI361066B (en) 2004-07-26 2012-04-01 Chugai Pharmaceutical Co Ltd 5-substituted-2-phenylamino benzamides as mek inhibitors KR20090006885A (en) 2004-08-17 2009-01-15 ìí. í¸íë§-ë¼ ë¡ì ìê² Substituted hydantoin CN101006085A (en) 2004-08-17 2007-07-25 é夫æ¼-æç½å¥æéå ¬å¸ Substituted hydantoins CN101654452A (en) 2004-08-25 2010-02-24 å¡å°åºå ¬å¸ Heterocyclic compounds and methods of use. US7652051B2 (en) 2004-08-25 2010-01-26 Targegen, Inc. Heterocyclic compounds and methods of use KR20070055575A (en) 2004-09-01 2007-05-30 ìì¤í¸ë¼ì ë¤ì¹´ ìë² Quinazolinone Derivatives and Uses thereof as J-RAF Inhibitors TW200621766A (en) 2004-09-17 2006-07-01 Hoffmann La Roche Substituted hydantoins JP2006083133A (en) 2004-09-17 2006-03-30 Sankyo Co Ltd Medicinal composition of sulfamide derivative JP5214971B2 (en) 2004-10-20 2013-06-19 ã¡ã«ã¯ ã»ãã¼ã ã½ã·ã¨ã ã¢ããã 3-allylaminopiperidine derivatives WO2006056427A1 (en) 2004-11-24 2006-06-01 Laboratoires Serono S.A. Novel 4-arylamino pyridone derivatives as mek inhibitors for the treatment of hyperproliferative disorders CA2586796A1 (en) 2004-12-01 2006-06-08 Laboratoires Serono S.A. [1,2,4]triazolo[4,3-a]pyridine derivatives for the treatment of hyperproliferative diseases US7429667B2 (en) 2005-01-20 2008-09-30 Ardea Biosciences, Inc. Phenylamino isothiazole carboxamidines as MEK inhibitors PL2361905T3 (en) 2005-05-18 2013-07-31 Array Biopharma Inc Heterocyclic Inhibitors of MEK and methods of use thereof WO2006133417A1 (en) 2005-06-07 2006-12-14 Valeant Pharmaceuticals International Phenylamino isothiazole carboxamidines as mek inhibitors US8648116B2 (en) * 2005-07-21 2014-02-11 Ardea Biosciences, Inc. Derivatives of N-(arylamino) sulfonamides including polymorphs as inhibitors of MEK as well as compositions, methods of use and methods for preparing the same AU2006272837B2 (en) 2005-07-21 2012-08-23 Ardea Biosciences, Inc. N-(arylamino)-sulfonamide inhibitors of MEK US8101799B2 (en) 2005-07-21 2012-01-24 Ardea Biosciences Derivatives of N-(arylamino) sulfonamides as inhibitors of MEK WO2007025090A2 (en) 2005-08-25 2007-03-01 Kalypsys, Inc. Heterobicyclic and - tricyclic inhibitors of mapk/erk kinase CN103524392B (en) 2005-10-07 2018-06-01 åå å¡å©å¸æ¯è¡ä»½æéå ¬å¸ As for treating the azetidine of the MEK inhibitor of proliferative disease US20090030058A1 (en) 2005-12-21 2009-01-29 Mohammed Pervez Tosylate salt of 6- (4-br0m0-2-chl0r0phenylamin0) -7-fluoro-n- (2-hydroxyethoxy) -3-methyl-3h-benzimi dazole- 5 - carboxamide , mek inhibitor useful in the treatment of cancer US7612212B2 (en) 2006-02-22 2009-11-03 Hoffmann-La Roche Inc. Substituted hydantoins WO2007113557A1 (en) 2006-04-05 2007-10-11 Astrazeneca Ab Substituted quinazolines with anti-cancer activity WO2007121269A2 (en) 2006-04-11 2007-10-25 Ardea Biosciences, Inc. N-aryl-n'alkyl sulfamides as mek inhibitors CN101454004B (en) 2006-04-18 2013-12-04 é¿è¿ªäºçå½ç§å¦å ¬å¸ Pyridone sulfonamides and pyridone sulfamides as mek inhibitors ZA200807263B (en) 2006-04-19 2009-11-25 Serono Lab Novel heteroaryl-substituted arylaminopyrldine derivatives as MEK inhibitors US7772233B2 (en) 2006-04-19 2010-08-10 Merck Serono, S.A. Arylamino N-heteroaryl compounds as MEK inhibitors CN104784695A (en) 2006-08-16 2015-07-22 åå å¡å©å¸æ¯è¡ä»½æéå ¬å¸ Method of using PI3K and MEK modulators WO2008020203A1 (en) 2006-08-17 2008-02-21 Astrazeneca Ab Pyridinylquinaz0linamine derivatives and their use as b-raf inhibitors BRPI0714635A2 (en) 2006-08-21 2013-06-18 Genentech Inc compounds, pharmaceutical composition, method for inhibiting abnormal cell growth or treating hyperproliferative dysfunction, method for treating an inflammatory disease, and method for treating an autoimmune disease WO2008024724A1 (en) 2006-08-21 2008-02-28 Genentech, Inc. Aza-benzothiophenyl compounds and methods of use EP2057168A2 (en) 2006-08-31 2009-05-13 Array Biopharma, Inc. Raf inhibitor compounds and methods of use thereof US7943659B2 (en) 2006-10-31 2011-05-17 Takeda Pharmaceutical Company Limited MAPK/ERK kinase inhibitors PL2099796T3 (en) 2006-11-30 2011-10-31 Genentech Inc Aza-indolyl compounds and methods of use TR201900306T4 (en) 2006-12-14 2019-02-21 Exelixis Inc Methods of using Mek inhibitors. WO2008120004A1 (en) 2007-04-02 2008-10-09 Astrazeneca Ab Combination of a mek- inhibitor and a b-raf inhibitor for the treatment of cancer EP2370568B1 (en) * 2008-12-10 2017-07-19 Dana-Farber Cancer Institute, Inc. Mek mutations conferring resistance to mek inhibitors LT3560498T (en) 2009-10-16 2022-11-25 Novartis Ag Combination comprising an mek inhibitor and a b-raf inhibitorOwner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GARRAWAY, LEVI A.;REEL/FRAME:035723/0144
Effective date: 20121031
Owner name: BROAD INSTITUTE, INC., MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOHANNESSEN, CORY M.;REEL/FRAME:035723/0164
Effective date: 20121101
2016-07-26 AS AssignmentOwner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF
Free format text: CONFIRMATORY LICENSE;ASSIGNOR:DANA-FARBER CANCER INST;REEL/FRAME:039462/0191
Effective date: 20160621
2017-06-23 STCB Information on status: application discontinuationFree format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4