본 ë°ëª ì ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ ë° ê·¸ ì§ë¨ ë°©ë²ì ê´í ê²ì´ë¤. ì¢ ë 구체ì ì¼ë¡ 본 ë°ëª ì íë ì´ìì ì¼ìë¡ë¶í° ì¼ì ì í¸ë¥¼ ì ë ¥ë°ë ì¼ìì í¸ ì ë ¥ë¶ì, ì기 ì¼ìì í¸ ì ë ¥ë¶ë¡ë¶í° ì ë ¥ë°ì ì¼ìì í¸ë¥¼ ì§ë¨ ì¥ì¹ìì ì¬ì©í ì ìë ê°ì¼ë¡ ê°ê³µíë ì ë ¥ ë°ì´í° ê°ê³µë¶ì, ì기 ì ë ¥ ë°ì´í° ê°ê³µë¶ì ìí´ ê°ê³µë ë°ì´í°ë¥¼ 모ë¸ë§íì¬ ì§ë¨ 모ë¸ë§ ê°ì ì°ì¶íë 모ë¸ë§ë¶ì, ì기 ì¼ìê° ì ììíì¼ ë 미리 모ë¸ë§ ë ì기 ì¼ìì ì¼ì ì í¸ì ëí 참조 모ë¸ë§ê°ì ì ì¥íê³ , ì기 ì¼ìì ê³ ì¥ ì íì íë¨í기 ìí ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ì ì¥íë ë©ëª¨ë¦¬ì, ì기 ì§ë¨ 모ë¸ë§ ê°ê³¼ ì기 ë©ëª¨ë¦¬ì ì ì¥ë í´ë¹ ì¼ìì 참조 모ë¸ë§ ê°ì ìê´ë를 ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì 무를 ì§ë¨íë ê³ ì¥ ì§ë¨ë¶ ë° ì기 ê³ ì¥ ì§ë¨ë¶ì ìí´ í´ë¹ ì¼ìê° ê³ ì¥ì¸ ê²ì¼ë¡ íë¨ëë©´, ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨íë ê³ ì¥ì í íë¨ë¶ë¥¼ í¬í¨íë¤. ìì í ë°ì ê°ì 본 ë°ëª ì ë°ë¥´ë©´, 본 ë°ëª ì ì¼ìì ì 뢰ì±ì í¥ìíê³ ê´ë¦¬ë¥¼ ì©ì´íê² í ì ìì¼ë¯ë¡ ê°ì¢ ì´ë° 기구ì ì°ì ì¤ë¹ ë° ê·¸ ìì¤í ì ìì ì± ë° ìì°ì±ì í¥ììí¬ ì ìë ì¥ì ì´ ìë¤.The present invention relates to a general-purpose sensor self-diagnostic apparatus and a diagnostic method thereof. More specifically, the present invention provides a sensor signal input unit for receiving a sensor signal from at least one sensor, an input data processing unit for processing the sensor signal received from the sensor signal input unit to a value that can be used in the diagnostic device, and the input data A modeling unit that calculates a diagnostic modeling value by modeling the processed data by the processing unit, and stores a reference modeling value of a sensor signal of the sensor that is pre-modeled when the sensor is in a normal state, and stores a failure type of the sensor. A memory for storing the failure type determination data for determining, and a failure diagnosis unit for diagnosing the failure of the sensor by comparing the correlation between the diagnostic modeling value and the reference modeling value of the sensor stored in the memory and the failure diagnosis unit If it is determined that the sensor is a fault by the diagnostic modeling value and the true Any help of the modeling value comparing said failure type determining data, and includes a failure determination to determine the type of failure modes of the sensor. According to the present invention as described above, the present invention can improve the reliability and easy management of the sensor, there is an advantage that can improve the stability and productivity of various transport mechanisms, industrial equipment and the system.
Description Translated from Korean ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ ë° ê·¸ ì§ë¨ ë°©ë²{APPARATUS AND METHOD FOR SELF-DIAGNOSING THE STATUS OF ANY KIND OF SENSORS}General-purpose sensor self-diagnosis device and its diagnostic method {APPARATUS AND METHOD FOR SELF-DIAGNOSING THE STATUS OF ANY KIND OF SENSORS} 본 ë°ëª
ì ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ê´í ê²ì¼ë¡, ëì± ìì¸íê²ë í¹ì ì¼ìë¡ë¶í° ì´ê¸° ì ì ì
ë ¥ì í¸ë¥¼ ë°ì ê·¸ ì¼ì를 모ë¸ë§(ì¬ê¸°ì, 모ë¸ë§ì 모ë¸ë§ ê³ì, ì í, ë° ê°ì¢
ë³ì ë±ì í¬í¨í¨)í ë¤, ê·¸ ì´ê¸° 모ë¸ë§ í í¹ì ì¼ìë¡ë¶í°ì ì§ë¨ 모ë¸ë§ ê°ê³¼ ì ì 모ë¸ë§ ì¶ë ¥ ê°ì ë¹êµíì¬ ì¼ìì ê³ ì¥ì 무 ë° ê³ ì¥ ì íì íë¨íë©°, í´ë¹ ì¼ìê° ê³ ì¥ì´ ë ê²½ì° ì¬ì©ììê² ì´ë¥¼ ì림ì¼ë¡ì¨ ì¬ê³ 를 미ì°ì ë°©ì§íê³ ì¼ì를 í¬í¨í ìì¤í
ì ìì ì± ë° ì 뢰ì±ì íë³´í ì ìëë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ ë° ê·¸ ì§ë¨ ë°©ë²ì ê´í ê²ì´ë¤.
The present invention relates to a general-purpose sensor self-diagnostic apparatus, and more particularly, receives an initial normal input signal from a specific sensor and models the sensor (where modeling includes modeling coefficients, types, and various variables, and the like). After the initial modeling, the diagnostic modeling value from the specific sensor is compared with the normal modeling output value to determine whether the sensor is faulty or failure type, and if the sensor fails, the user is notified by preventing the accident and including the sensor. The present invention relates to a general-purpose sensor self-diagnostic device and a method of diagnosing the same, which enable the system to secure safety and reliability.
본 ë°ëª ì ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ ë° ê·¸ ì§ë¨ ë°©ë²ì ê´í ê²ì´ë¤.The present invention relates to a general-purpose sensor self-diagnostic apparatus and a diagnostic method thereof.
êµë, ë, í°ë, ëíë¹ë© ë± ëíìì¤í ì ê²½ì° ì ê·¼ì±ì íê³ë¡ ì¸í´ 기존ì ê²ì¬ë ê´ë¦¬ ë°©ë²ì ì ê·¼ë°©ë² ë©´ìì í¨ì¨ì±ì´ ë¨ì´ì§ë©°, ìê°ì ì¸ ì´ìì í¬ì°©íê¸°ê° ì´ë ¤ì´ ê²½ì°ê° ë§ë¤. In the case of large systems such as bridges, dams, tunnels, and large buildings, due to the limited accessibility, existing inspection and management methods are less efficient in terms of access methods, and it is often difficult to catch transient abnormalities.
íí¸, ëí ííê³µì ìì¤í ì ìµê·¼ì íì¬ ë° ìì ì¬ê³ ë°ìì ê²½ì ì ìì¤, ì¸ëª í¼í´ ë° íê²½ì¤ì¼ ë±ì ì§ì ì ìì¤ë¿ë§ ìëë¼ êµê°ì ì 뢰ë를 ì íìì¼ êµê° ê²½ì 를 ì í´íë ìì¸ì´ ëê³ ìë¤. On the other hand, the recent fire and safety accidents of large chemical process systems are not only direct losses such as economic loss, casualties and environmental pollution, but also deteriorate national credibility and become a factor that undermines the national economy.
ë°ë¼ì, ëí ìì¤í ë±ì ìì íë³´ì ì ì§ê´ë¦¬ë¥¼ ìí ê¸°ë° íµì¬ 기ì ì¸ ì¤ë§í¸ ì¼ììì¤í 구조ì ê´ë ¨ë 기ì ê°ë°ì´ ì ì¤íê² ì구ëë©°, ëí ì ê· ë° ê¸°ì¡´ì¤ë¹ì ê²½ì° ë³µì¡í ë° ë ¸ííë¡ ì¸í´ ì¤ë¹ì ìì ì±ì´ ì¤ìí ì¬ìì¼ë¡ ë ì¤ë¥´ê³ ìë¤. Therefore, the development of technology related to the smart sensor system structure, which is the core technology for securing and maintaining safety of large systems, is urgently needed.In addition, the safety of facilities is emerging as an important issue due to the complexity and obsolescence of new and existing facilities. have.
ëí, ëë ¸ 미í°(nano meter) ë¨ì를 ì ë° ê°ê³µíë 기ê³ì ìì´ìì ì´ëë íì¸ì© ì¼ì, íí íëí¸ì ê° ë¨ìê³µì ì ì¤ì¹ëì´ ê°ì¢ ìë ¥, ì¨ë, CO2 ëë, ì°ìëëì¼ì ë± ê°ì기ë¥ì ê°ë ì¼ìë¥, ìëì°¨, ì ë°, ë¹í기 ë±ì ì¬ì©ëê³ ìë ìëª ê³¼ ì§ê²°ëì´ ìë ê°ì¢ ì¼ìë¥, ììë ¥ ë°ì ì¥ë¹ì ììëë ì¨ë, ìë ¥ì¼ì ë± ì¤ìí êµê° 기ê°ì°ì ë¶ì¼ì ê°ì¢ ì¤ë¹ì ììëë ê° ì¼ìë¥ì ì¤ìì±ì êµ³ì´ ìì¸í ì¤ëª íì§ ììë ì ì ìì ë§í¼ ì¤ìí 구ì±ììë¼ê³ í ì ìë¤.In addition, sensors for checking movement amount in a machine for precisely processing nanometer units, sensors installed at each unit process of a chemical plant, and sensors having various monitoring functions such as pressure, temperature, CO 2 concentration, oxygen concentration sensor, The importance of each sensor used in various facilities of important national key industries such as sensors used directly for life used in automobiles, ships, airplanes, temperature and pressure sensors for nuclear power generation equipment, etc. is not necessarily explained in detail. It is an important component.
ê·¸ë°ë° ì´ë° ì¤ìí 기ë¥ì ë´ë¹íë ì¼ììì ì¶ë ¥ëë ì í¸ê° ì¼ìì ê³ ì¥ì¼ë¡ ë¶ì íí ì í¸ë¥¼ ì¶ë ¥íê³ ìê³ , ê·¸ ì´ì ë° ê³ ì¥ìí를 ì ì ìë¤ë©´ ê° ì¤ë¹ì ì¤ëìì¼ë¡ ì¸í ê²½ì ì ì¸ í¼í´ë ì´ë£¨ ë§í ì ìì ë§í¼ í¬ë¤ê³ í ì ìë¤.However, if the signal output from the sensor that is in charge of this important function is outputting an incorrect signal due to the sensor's failure, the economic damage due to the malfunction of each equipment is incredibly large if the abnormality and the failure status are unknown. can do.
íì§ë§, ì¢
ëìë ì¼ìì ê³ ì¥ ì¬ë¶ ë° ê³ ì¥ ì íì ìëì¼ë¡ íë¨íì¬ ì´ë¥¼ ì리ë ìì¤í
ì´ ë°ëª
ëì§ ìì ì¼ìì ê³ ì¥ ì¬ë¶ë¥¼ ì©ì´íê² íì
í ì ìê³ , ì´ì ë°ë¼ ê·¸ ì¼ì를 ì´ì©íë ì¤ë¹ê° ì¤ìë ëì´ ê²½ì ì ì¼ë¡ í° í¼í´ë¥¼ ë¼ì¹ë 문ì ì ì´ ìë¤.
However, in the related art, a system for automatically determining whether a sensor is broken and a type of failure is not invented so that it is not easy to determine whether the sensor is broken. Accordingly, a facility using the sensor malfunctions, causing economic damage. There is a problem.
본 ë°ëª
ì ì기 문ì ì ì í´ê²°í기 ìíì¬ ë°ëª
ë ê²ì¼ë¡, 본 ë°ëª
ì í¹ì ì¼ìë¡ë¶í° ì´ê¸° ì ì ì
ë ¥ì í¸ë¥¼ ë°ì ê·¸ ì¼ì를 모ë¸ë§(ì¬ê¸°ì, 모ë¸ë§ì 모ë¸ë§ ê³ì, ì í, ë° ê°ì¢
ë³ì ë±ì í¬í¨í¨)í ë¤, ê·¸ ì´ê¸° 모ë¸ë§ í í¹ì ì¼ìë¡ë¶í°ì ì§ë¨ 모ë¸ë§ ê°ê³¼ ì ì 모ë¸ë§ ì¶ë ¥ ê°ì ë¹êµíì¬ ì¼ìì ê³ ì¥ì 무 ë° ê³ ì¥ ì íì íë¨íë©°, í´ë¹ ì¼ìê° ê³ ì¥ì´ ë ê²½ì° ì¬ì©ììê² ì´ë¥¼ ì림ì¼ë¡ì¨ ì¬ê³ 를 미ì°ì ë°©ì§íê³ ì¼ì를 í¬í¨í ìì¤í
ì ìì ì± ë° ì 뢰ì±ì íë³´í ì ìëë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ ë° ê·¸ ì§ë¨ ë°©ë²ì ì ê³µíë ê²ì 목ì ì¼ë¡ íë¤.
The present invention has been invented to solve the above problems, the present invention receives an initial normal input signal from a specific sensor and modeling the sensor (where modeling includes modeling coefficients, types, and various variables), After the initial modeling, the diagnostic modeling value from the specific sensor is compared with the normal modeling output value to determine whether the sensor is faulty or failure type, and if the sensor fails, the user is notified to prevent the accident and prevent the sensor. An object of the present invention is to provide a general-purpose sensor self-diagnostic apparatus and its diagnostic method, which can ensure the safety and reliability of the system.
ì기ì 목ì ì ë¬ì±í기 ìíì¬ ë³¸ ë°ëª ì ìí ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ë íë ì´ìì ì¼ìë¡ë¶í° ì¼ì ì í¸ë¥¼ ì ë ¥ë°ë ì¼ìì í¸ ì ë ¥ë¶; ì기 ì¼ìì í¸ ì ë ¥ë¶ë¡ë¶í° ì ë ¥ë°ì ì¼ìì í¸ë¥¼ ì§ë¨ ì¥ì¹ìì ì¬ì©í ì ìë ê°ì¼ë¡ ê°ê³µíë ì ë ¥ ë°ì´í° ê°ê³µë¶; ì기 ì ë ¥ ë°ì´í° ê°ê³µë¶ì ìí´ ê°ê³µë ë°ì´í°ë¥¼ 모ë¸ë§íì¬ ì§ë¨ 모ë¸ë§ ê°ì ì°ì¶íë 모ë¸ë§ë¶; ì기 ì¼ìê° ì ììíì¼ ë 미리 모ë¸ë§ ë ì기 ì¼ìì ì¼ì ì í¸ì ëí 참조 모ë¸ë§ê°ì ì ì¥íê³ , ì기 ì¼ìì ê³ ì¥ ì íì íë¨í기 ìí ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ì ì¥íë ë©ëª¨ë¦¬; ì기 ì§ë¨ 모ë¸ë§ ê°ê³¼ ì기 ë©ëª¨ë¦¬ì ì ì¥ë í´ë¹ ì¼ìì 참조 모ë¸ë§ ê°ì ìê´ë를 ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì 무를 ì§ë¨íë ê³ ì¥ ì§ë¨ë¶; ë° ì기 ê³ ì¥ ì§ë¨ë¶ì ìí´ í´ë¹ ì¼ìê° ê³ ì¥ì¸ ê²ì¼ë¡ íë¨ëë©´, ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨íë ê³ ì¥ì í íë¨ë¶;를 구ë¹íë¤.In order to achieve the above object, a general-purpose sensor self-diagnostic apparatus according to the present invention comprises a sensor signal input unit for receiving a sensor signal from at least one sensor; An input data processing unit processing the sensor signal received from the sensor signal input unit into a value that can be used in a diagnostic apparatus; A modeling unit configured to model data processed by the input data processing unit to calculate a diagnostic modeling value; A memory for storing reference modeling values of sensor signals of the sensors that are previously modeled when the sensor is in a normal state, and storing failure type determination data for determining a failure type of the sensor; A fault diagnosis unit comparing a correlation between the diagnostic modeling value and a reference modeling value of the corresponding sensor stored in the memory to diagnose whether the corresponding sensor has a fault; And a failure type determination unit for determining a failure type of the corresponding sensor by comparing a correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data when the failure diagnosis unit determines that the corresponding sensor is a failure. Equipped.
ê·¸ë¦¬ê³ ì기 ê³ ì¥ì í íë¨ë¶ë, í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨í기 ìí´ ì기 ì§ë¨ 모ë¸ë§ê°ì ì°ìì±, íí ë° ëë ì´ê° ì¤ íë ì´ìì ì´ì©íë¤.The failure type determination unit uses one or more of the continuity, shape, and delay value of the diagnostic modeling value to determine a failure type of the corresponding sensor.
íí¸, ì기 ê³ ì¥ì í íë¨ë¶ë¡ë¶í° í´ë¹ ì¼ìì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ ì ë ¥ë°ì ìì±, í ì¤í¸ ë° ê·¸ëí를 ì´ì©íì¬ ì¬ì©ììê² ì¶ë ¥íë ì¶ë ¥ë¶;를 ë 구ë¹íë ê²ì´ ë°ëì§íë¤.On the other hand, it is preferable to further include an output unit for receiving the data on the type of failure of the sensor from the failure type determination unit and outputs to the user using voice, text and graph.
ë, ì기 ê³ ì¥ì í íë¨ë¶ë¡ë¶í° í´ë¹ ì¼ìì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ ì ë ¥ë°ì ì ì ëë 무ì íµì ë°©ìì ì´ì©íì¬ ì¸ë¶ì¥ì¹ë¡ ì ì¡íë íµì ë¶;를 ë 구ë¹íë¤.The apparatus may further include a communication unit configured to receive data regarding a failure type of the corresponding sensor from the failure type determination unit and transmit the data to the external device using a wired or wireless communication method.
ê·¸ë¦¬ê³ ì기 ì ë ¥ ë°ì´í° ê°ê³µë¶ë, ì기 íë ì´ìì ì¼ìë¡ ì ë ¥ëë ì¼ì ì í¸ê° ìë ë¡ê·¸ ì í¸ì¸ ê²½ì°, ì기 ìë ë¡ê·¸ ì í¸ë¥¼ ëì§í¸ ì í¸ë¡ ë³ííì¬ ì기 모ë¸ë§ë¶ì ì ë¬íë¤.When the sensor signal input to the at least one sensor is an analog signal, the input data processing unit converts the analog signal into a digital signal and transmits the analog signal to the modeling unit.
ì기ì 목ì ì ë¬ì±í기 ìíì¬ ë³¸ ë°ëª ì ìí ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ì§ë¨ ë°©ë²ì íë ì´ìì ì¼ìë¡ë¶í° ì¼ì ì í¸ë¥¼ ì ë ¥ë°ë (A)ë¨ê³; ì ë ¥ë ì¼ì ì í¸ë¥¼ 모ë¸ë§íì¬ ì§ë¨ 모ë¸ë§ê°ì ì°ì¶íê³ , ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ë©ëª¨ë¦¬ì ì ì¥ë í´ë¹ ì¼ìì 참조 모ë¸ë§ê°ì ìê´ë를 ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì 무를 ì§ë¨íë (B)ë¨ê³; ë° í´ë¹ ì¼ìê° ê³ ì¥ì¸ ê²ì¼ë¡ íë¨ëë©´, ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ë©ëª¨ë¦¬ì ì ì¥ë ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨íë (C)ë¨ê³;를 í¬í¨íë¤.In order to achieve the above object, a diagnostic method of a general-purpose sensor self-diagnosis apparatus according to the present invention includes: receiving a sensor signal from at least one sensor; (B) diagnosing a failure of a corresponding sensor by modeling an input sensor signal to calculate a diagnostic modeling value and comparing a correlation between the diagnostic modeling value and a reference modeling value of the corresponding sensor stored in a memory; And (C) determining a failure type of the corresponding sensor by comparing a correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data stored in the memory when it is determined that the corresponding sensor is a failure.
ì´ë, ì기 참조 모ë¸ë§ê°ì, í´ë¹ ì¼ìê° ì ììíì¼ ë 미리 모ë¸ë§ë í´ë¹ ì¼ìì ì¼ì ì í¸ì ëí 모ë¸ë§ê°ì´ë¤.In this case, the reference modeling value is a modeling value of a sensor signal of a corresponding sensor that is previously modeled when the corresponding sensor is in a normal state.
ê·¸ë¦¬ê³ ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ë©ëª¨ë¦¬ì ì ì¥ë ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨íë ë¨ê³ë,í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨í기 ìí´ ì기 ì§ë¨ 모ë¸ë§ê°ì ì°ìì±, íí ë° ëë ì´ê° ì¤ íë ì´ìì ì´ì©íë ê²ì´ ë°ëì§íë¤.The determining of the failure type of the corresponding sensor by comparing the correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data stored in the memory may include: continuity of the diagnostic modeling value to determine the failure type of the corresponding sensor; Preference is given to using one or more of, form and delay values.
ëí, í´ë¹ ì¼ìì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ ìì±, í
ì¤í¸, ë° ê·¸ëí를 ì´ì©íì¬ ì¬ì©ììê² ì¶ë ¥íë (D)ë¨ê³;를 ë í¬í¨íë ê²ì´ ë°ëì§íë¤.
The method may further include (D) outputting data on the type of failure of the sensor to a user using voice, text, and graphs.
본 ë°ëª ì ë°ë¥´ë©´, 본 ë°ëª ì í¹ì ì¼ìë¡ë¶í° ì´ê¸° ì ì ì ë ¥ì í¸ë¥¼ ë°ì ê·¸ ì¼ì를 모ë¸ë§(ì¬ê¸°ì, 모ë¸ë§ì 모ë¸ë§ ê³ì, ì í, ë° ê°ì¢ ë³ì ë±ì í¬í¨í¨)í ë¤, ê·¸ ì´ê¸° 모ë¸ë§ í í¹ì ì¼ìë¡ë¶í°ì ì§ë¨ 모ë¸ë§ ê°ê³¼ ì ì 모ë¸ë§ ì¶ë ¥ ê°ì ë¹êµíì¬ ì¼ìì ê³ ì¥ì 무 ë° ê³ ì¥ ì íì íë¨íë©°, í´ë¹ ì¼ìê° ê³ ì¥ì´ ë ê²½ì° ì¬ì©ììê² ì´ë¥¼ ì림ì¼ë¡ì¨ ì¬ê³ 를 미ì°ì ë°©ì§íê³ ì¼ì를 í¬í¨í ìì¤í ì ìì ì± ë° ì 뢰ì±ì ëì´ë©° ì´ë¥¼ íµí´ ìëí ìì¤í ì ê´ë¦¬ë¥¼ ì©ì´íê² í ì ìë ì¥ì ì´ ìë¤.According to the present invention, the present invention receives an initial normal input signal from a specific sensor and models the sensor (where modeling includes modeling coefficients, types, and various variables, etc.), and then, from the specific sensor after the initial modeling. The diagnostic modeling value is compared with the normal modeling output value to determine whether there is a sensor failure or failure type, and if the sensor fails, the user is notified by preventing the accident and improving the safety and reliability of the system including the sensor. This has the advantage of facilitating the management of the automation system.
ëí, 본 ë°ëª
ì ìê°ì ë°ë¥¸ ì¼ìì ë
¸í를 ì측í ì ìë ì¥ì ì ì´ì© ë기 ì¤ì¼, ìì§ ì¤ì¼ ë±ì íê²½, êµíµë ë±ì ì§ìì ì¸ ì¥ìê° ê°ì를 ìí ê³ì¸¡ ì¼ìì ìì´ì ê´ë¦¬ ë° ì¬ì©ì´ ì©ì´í ì¥ì ì´ ìë¤.
In addition, the present invention has the advantage of easy to manage and use in the measurement sensor for continuous long-term monitoring of the environment, such as air pollution, water pollution, traffic volume, etc. using the advantage that can predict the aging of the sensor over time.
ë 1ì 본 ë°ëª
ì ë°ëì§í ì¤ììì ìí ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ë´ë¶êµ¬ì±ì ëìí ë¸ëë.
ë 2ë 본 ë°ëª
ì´ ëìíë ê³¼ì ì ì¤ëª
íë ì¤ëª
ë.
ë 3ì 본 ë°ëª
ì ë°ëì§í ì¤ììì ìí ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ê° ëìíë ê³¼ì ì ëìí ììë.1 is a block diagram showing the internal configuration of a general-purpose sensor self-diagnostic apparatus according to a preferred embodiment of the present invention.
2 is an explanatory diagram illustrating a process in which the present invention operates.
3 is a flowchart illustrating a process of operating a general-purpose sensor self-diagnosis apparatus according to a preferred embodiment of the present invention.
ì´íììë ì기í ë°ì ê°ì 본 ë°ëª
ì ìí ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ë°ëì§í ì¤ìì를 첨ë¶ë ëë©´ì ì°¸ê³ ë¡ íì¬ ìì¸íê² ì¤ëª
íë¤.
Hereinafter, with reference to the accompanying drawings, a preferred embodiment of a general-purpose sensor self-diagnostic apparatus according to the present invention as described above will be described in detail.
ë 1ìë 본 ë°ëª ì ë°ëì§í ì¤ììì ìí ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ë´ë¶êµ¬ì±ì ëìí ë¸ëëê° ëìëì´ ìë¤.1 is a block diagram showing the internal configuration of a general-purpose sensor self-diagnostic apparatus according to a preferred embodiment of the present invention.
ë 1ì ëìë ë°ì ê°ì´, 본 ë°ëª ì ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹(100)ë ì¼ì(110), ì¼ìì í¸ ì ë ¥ë¶(120), ì ë ¥ë°ì´í° ê°ê³µë¶(121), 모ë¸ë§ë¶(123), ê³ ì¥ ì§ë¨ë¶(130), ê³ ì¥ì í íë¨ë¶(140), ì¤ìì²ë¦¬ë¶(150), ì ìë¶(160), íµì ë¶(170), ë©ëª¨ë¦¬(180), ì¶ë ¥ë¶(190)를 í¬í¨íë¤.As shown in FIG. 1, the general-purpose sensor self- diagnosis apparatus 100 of the present invention includes a sensor 110, a sensor signal input unit 120, an input data processing unit 121, a modeling unit 123, and a failure diagnosis unit ( 130, a failure type determination unit 140, a central processing unit 150, a power supply unit 160, a communication unit 170, a memory 180, and an output unit 190.
íë ì´ìì ì¼ì(110)ë ì¼ì ì í¸ë¥¼ ìì±íì¬ ì¤ìê°ì¼ë¡ ì¼ìì í¸ ì ë ¥ë¶(120)ì ê·¸ ì¼ì ì í¸ë¥¼ ì ê³µíë¤.At least one sensor 110 generates a sensor signal and provides the sensor signal to the sensor signal input unit 120 in real time.
ì¼ìì í¸ ì ë ¥ë¶(120)ë íë ì´ìì ì¼ì(110)ë¡ë¶í° ì¤ìê°ì¼ë¡ ì¼ì ì í¸ë¥¼ ì /무ì ì¼ë¡ ì ë ¥ë°ê³ ê·¸ ì¼ìì í¸ë¥¼ ì ë ¥ë°ì´í° ê°ê³µë¶(121)ì ì ë¬íë¤. ì´ë, ì¼ì ì í¸ë ì ì ëë ì ë¥ ëë ì§ë¥ ëë ì íí ë±ì¼ë¡ ííëë ìë ë¡ê·¸ ì í¸ ííì¼ ìë ìê³ , íì¤, RS232, RS485 ë±ì¼ë¡ ííëë ëì§í¸ ì í¸ì¼ ìë ìë¤. ì´ë¬í ìë ë¡ê·¸ ì í¸ ëë ëì§í¸ ì í¸ë ì /무ì íµì ë§ì íµí´ ì ë ¥ë°ì ì ìë¤.The sensor signal input unit 120 receives the sensor signal from the one or more sensors 110 in real time via wired / wireless and transmits the sensor signal to the input data processing unit 121. In this case, the sensor signal may be in the form of an analog signal represented by voltage or current, or direct current or sine wave, or may be a digital signal represented by pulse, RS232, RS485, or the like. The analog signal or digital signal may be input through a wired / wireless communication network.
ì ë ¥ë°ì´í° ê°ê³µë¶(121)ë ì ë ¥ëë ì¼ìì ëì§í¸ ì í¸ ëë ìë ë¡ê·¸ ì í¸ë¥¼ ì¤ì ì²ë¦¬ë¶(150)ìì ì²ë¦¬í ì ìëë¡ ìíë§ì£¼ê¸° ë° ê·¸ í¬ê¸°ë¥¼ ì½ìë ííë¡ ê°ê³µì²ë¦¬íë¤.The input data processing unit 121 processes the sampling period and the size thereof in a promised form so that the central processing unit 150 can process the digital signal or the analog signal of the input sensor.
ì´ë, ì ë ¥ë°ì´í° ê°ê³µë¶(121)ë ì ë ¥ëë ì¼ì ì í¸ê° ìë ë¡ê·¸ ì í¸ì¸ ê²½ì°, ADC를 íµí´ ì기 ìë ë¡ê·¸ ì í¸ë¥¼ ëì§í¸ ì í¸ë¡ ë³ííì¬ ëª¨ë¸ë§ë¶(123)ì ì ë¬íë¤.In this case, when the input sensor signal is an analog signal, the input data processing unit 121 converts the analog signal into a digital signal through an ADC and transmits the analog signal to the modeling unit 123.
모ë¸ë§ë¶(123)ë ì ë ¥ë°ì´í° ê°ê³µë¶(121)ìì ê°ê³µë ë°ì´í°ê° ì ë ¥ëë©´, ê·¸ ì ë ¥ë ë°ì´í°ë¥¼ 모ë¸ë§íì¬ ì§ë¨ 모ë¸ë§ ê°ì ì°ì¶íë¤. ì¬ê¸°ì, 모ë¸ë§ì 모ë¸ë§ ê³ì, ì í, ë° ê°ì¢ ë³ì ë±ì í¬í¨íë¤.When the data processed by the input data processing unit 121 is input, the modeling unit 123 models the input data to calculate a diagnostic modeling value. Here, the modeling includes modeling coefficients, types, various variables, and the like.
ë©ëª¨ë¦¬(180)ìë ì¼ì(110)ê° ì ììíì¼ ë 미리 모ë¸ë§ ë ì기 ì¼ì(110)ì ì¼ì ì í¸ì ëí 참조 모ë¸ë§ê°ì´ ì ì¥ëê³ , ì기 ì¼ì(110)ì ê³ ì¥ ì íì íë¨í기 ìí ê³ ì¥ì ííë¨ ë°ì´í°ê° ì ì¥ëë¤.In the memory 180, reference modeling values of sensor signals of the sensor 110 that are pre-modeled when the sensor 110 is in a normal state are stored, and failure type determination data for determining a failure type of the sensor 110. Is stored.
ì´ë, ê³ ì¥ì ííë¨ ë°ì´í°ë 모ë¸ë§ ê°ì ì°ìì±, íí ë° ëë ì´ê°ê³¼ ê°ì ì¬ë¬ ììì ìí´ ë¶ë³ëì´ í ì´ë¸íëì´ ì ì¥ëì´ ìë ê²ì´ ë°ëì§íë¤.In this case, it is preferable that the failure type determination data is classified and stored in a table according to various factors such as continuity, shape, and delay value of modeling values.
ê³ ì¥ ì§ë¨ë¶(130)ë ì ë ¥ë°ì´í° ê°ê³µë¶(121)ì ì¼ì ì í¸ê° ì ë ¥ëë©´, ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 ë©ëª¨ë¦¬(180)ì ì ì¥ë í´ë¹ ì¼ì(110)ì 참조 모ë¸ë§ê°ì ìê´ë를 ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì 무를 ì§ë¨íë¤. When the sensor signal is input to the input data processing unit 121, the failure diagnosis unit 130 compares the correlation between the diagnostic modeling value and the reference modeling value of the corresponding sensor 110 stored in the memory 180 to determine the corresponding sensor. Diagnose the failure.
ì¢ ë 구체ì ì¼ë¡, ê³ ì¥ ì§ë¨ë¶(130)ë ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ë를 ë¹êµíì¬ ê·¸ ìê´ëê° ê¸° ì¤ì ë ìê³ë²ì를 ì´ê³¼íë ê²½ì° ê³ ì¥ì´ ë¬ë¤ê³ íë¨íë ê²ì´ë¤. More specifically, the failure diagnosis unit 130 compares the correlation between the diagnostic modeling value and the reference modeling value and determines that the failure has occurred when the correlation exceeds the preset threshold range.
ì´ë, ê³ ì¥ ì§ë¨ë¶(130)ë 모ë¸ë§ì í기 ìí´ 40Mhz ì´ìì ëì주íì를 ê°ì§ë©°, íë¡í
í¬ì¸í¸(floating point) ì°ì°ì´ ê°ë¥í ê²ì ì¬ì©íë ê²ì´ ë°ëì§íë¤. ë§ì½, ë´ë¶ ADCê° ìë ê²½ì°, ì¸ë¶ì ì¥ì°©, ì íì±ì ìí´ 10-BIT ì´ìì RESOLUTIONì ê°ì§ë ADC를 ì¬ì©íë ê²ì´ ë°ëì§íë¤.
At this time, the failure diagnosis unit 130 has an operating frequency of 40Mhz or more for modeling, it is preferable to use a floating point (floating point) that can be used. If there is no internal ADC, it is recommended to use an ADC with more than 10-BIT RESOLUTION for external mounting and accuracy.
ë 2ìë ê³ ì¥ ì§ë¨ë¶(130)ê° ì¼ì ì í¸ê° ì ë ¥ëìì ë ê³ ì¥ ì 무를 ì§ë¨íë ê²ì ì¤ëª íë ì¤ëª ëê° ëìëì´ ìë¤.2 is an explanatory diagram illustrating that the failure diagnosis unit 130 diagnoses the presence or absence of a failure when a sensor signal is input.
ê³ ì¥ì í íë¨ë¶(140)ë ê³ ì¥ ì§ë¨ë¶(130)ì ìí´ í´ë¹ ì¼ì(110)ê° ê³ ì¥ì¸ ê²ì¼ë¡ íë¨ëë©´, ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨íë¤.If it is determined by the failure diagnosis unit 130 that the corresponding sensor 110 is a failure, the failure type determination unit 140 compares the correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data to determine the corresponding sensor. Determine the type of failure.
ì´ë, ê³ ì¥ì í íë¨ë¶(140)ë í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì íë¨í기 ìí´ ì기 ì§ë¨ 모ë¸ë§ê°ì ì°ìì±, íí ë° ëë ì´ê° ì¤ íë ì´ìì ì´ì©íë¤. ì¢ ë 구체ì ì¼ë¡, ê³ ì¥ì í íë¨ë¶(140)ë ë©ëª¨ë¦¬(180)ì ì ì ëì´ ìë ê³ ì¥ì ííë¨ ë°ì´í°ì 기ì´íì¬ ìê´ë ë¹êµë¥¼ íµí´ í´ë¹ ë²ìì ë°ë¼ ê·¸ ê³ ì¥ ì íì ê²°ì íë ê²ì´ë¤.In this case, the failure type determination unit 140 uses one or more of the continuity, shape, and delay value of the diagnostic modeling value to determine the failure type of the sensor 110. More specifically, the failure type determination unit 140 determines the failure type according to the corresponding range through the correlation comparison based on the failure type determination data stored in the memory 180.
íµì ë¶(170)ë ê³ ì¥ì í íë¨ë¶(140)ë¡ë¶í° í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ ì ë ¥ë°ì ì ì ëë 무ì íµì ë°©ìì ì´ì©íì¬ ì¸ë¶ì¥ì¹ë¡ ì ì¡íë¤. ì컨ë, íµì ë¶(170)ë í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ íµì ë§ì íµí´ ììì ì´ì¥ì¹, ì¥ì¹ ë©ì´ì»¤, ì§ì A/Sì¼í°, ë³´ííì¬ ë±ì ì ì¡í ì ìë ê²ì´ë¤.The communication unit 170 receives data on the type of failure of the sensor 110 from the failure type determination unit 140 and transmits the data to the external device using a wired or wireless communication method. For example, the communication unit 170 may transmit data regarding the type of failure of the sensor 110 to a higher level control device, a device maker, a designated A / S center, an insurance company, or the like through a communication network.
íí¸, ì¸ë¶ì¥ì¹ìì íµì ì RS232ì ê°ì¢ ì 무ì íµì ë§ì´ ì¬ì©ë ì ìë¤.Meanwhile, RS232 and various wired / wireless communication networks may be used for communication with an external device.
ì¶ë ¥ë¶(190)ë ê³ ì¥ì í íë¨ë¶(140)ë¡ë¶í° í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ ì ë ¥ë°ì ìì±, í ì¤í¸ ë° ê·¸ëí를 ì´ì©íì¬ ì¬ì©ììê² ì¶ë ¥íë¤.The output unit 190 receives data on the type of failure of the sensor 110 from the failure type determination unit 140 and outputs the data to the user using voice, text, and graphs.
ì¤ìì²ë¦¬ë¶(150)ë ì¼ìì í¸ ì ë ¥ë¶(120)ê° íë ì´ìì ì¼ì(110)ë¡ë¶í° ì¼ì ì í¸ë¥¼ ì ë ¥ë°ì¼ë©´, ê·¸ í´ë¹ ì¼ìì 참조 모ë¸ë§ê°ì´ ë©ëª¨ë¦¬(180)ì ì ì¥ëì´ ìëì§ íë¨íê³ , ê·¸ íë¨ê²°ê³¼ ë©ëª¨ë¦¬(180)ì í´ë¹ ì¼ì(110)ì ëí 참조 모ë¸ë§ê°ì´ ì¡´ì¬íì§ ìë ê²½ì°, í´ë¹ ì¼ì(110)ê° ì²ì ìëëë ê²ì´ë¼ê³ ê°ì£¼íê³ , í´ë¹ ì¼ì(110)ë¡ë¶í° ì²ì ì ë ¥ëë ë°ì´í°ë¥¼ 참조 모ë¸ë§ê°ì¼ë¡ íë¨íì¬ ë©ëª¨ë¦¬(180)ì ì ì¥íë¤.When the sensor signal input unit 120 receives a sensor signal from one or more sensors 110, the CPU 150 determines whether a reference modeling value of the corresponding sensor is stored in the memory 180, and determines that the memory signal ( If there is no reference modeling value for the corresponding sensor 110 in 180, the sensor 110 is regarded as starting up for the first time, and the first data input from the corresponding sensor 110 is determined as the reference modeling value for memory. Save at 180.
ëí, ì¤ìì²ë¦¬ë¶(150)ë ë¤ìê°ì ì¼ìë¡ë¶í° ì¼ì ì í¸ë¥¼ ì ë ¥ë°ë ê²½ì°, ê·¸ ì ë ¥ëë ë¤ìê°ì ì¼ì ì í¸ë¥¼ ì ííë 기ë¥ì ìííë¤. ì¦, ë¤ìì ì¼ì ì í¸ë¥¼ ì²ë¦¬í기 ìí ë©í°íë ìì ê°ì 기ë¥ì ìííë ê²ì´ë¤.In addition, when the central processing unit 150 receives sensor signals from a plurality of sensors, the central processing unit 150 performs a function of switching the plurality of input sensor signals. In other words, it functions as a multiplexer for processing a plurality of sensor signals.
ì ìë¶(160)ë ì¸ë¶ë¡ë¶í° ì
ë ¥ë°ì ì ìì´ ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹(100)ì ì¸ê°ëëë¡ ì²ë¦¬íë¤.
The power supply unit 160 processes the power input from the outside to be applied to the general-purpose sensor self- diagnosis apparatus 100.
ë 3ìë 본 ë°ëª ì ë°ëì§í ì¤ììì ìí ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ê° ëìíë ê³¼ì ì ëìí ììëê° ëìëì´ ìë¤.3 is a flowchart illustrating a process of operating a general-purpose sensor self-diagnosis apparatus according to a preferred embodiment of the present invention.
ì°ì , ì¼ìì í¸ ì ë ¥ë¶(120)ê° íë ì´ìì ì¼ì(110)ë¡ë¶í° ì¼ì ì í¸ë¥¼ ì ë ¥ë°ëë¤(ë¨ê³ S100).First, the sensor signal input unit 120 receives a sensor signal from one or more sensors 110 (step S100).
ê·¸ë¬ë©´, ì ë ¥ë°ì´í° ê°ê³µë¶(121)ê° ì ë ¥ëë ì¼ìì ëì§í¸ ì í¸ ëë ìë ë¡ê·¸ ì í¸ë¥¼ ì¤ìì²ë¦¬ë¶(150)ìì ì²ë¦¬í ì ìëë¡ ìíë§ ì£¼ê¸° ë° ê·¸ í¬ê¸°ë¥¼ 기 ì¤ì ë ííë¡ ê°ê³µ ì²ë¦¬íë¤.Then, the input data processing unit 121 processes the sampling period and the size thereof in a predetermined form so that the digital signal or the analog signal of the sensor input may be processed by the central processing unit 150.
ì´ë, ì ë ¥ë°ì´í° ê°ê³µë¶(121)ë ì ë ¥ëë ì¼ì ì í¸ê° ìë ë¡ê·¸ ì í¸ì¸ ê²½ì°, ADC를 íµí´ ì기 ìë ë¡ê·¸ ì í¸ë¥¼ ëì§í¸ ì í¸ë¡ ë³ííì¬ ëª¨ë¸ë§ë¶(123)ì ì ë¬íë¤.In this case, when the input sensor signal is an analog signal, the input data processing unit 121 converts the analog signal into a digital signal through an ADC and transmits the analog signal to the modeling unit 123.
모ë¸ë§ë¶(123)ë ì ë ¥ë°ì´í° ê°ê³µë¶(121)ìì ê°ê³µë ë°ì´í°ê° ì ë ¥ëë©´, ì ë ¥ë ë°ì´í°ë¥¼ 모ë¸ë§íì¬ ì§ë¨ 모ë¸ë§ ê°ì ì°ì¶íë¤(ë¨ê³ S110). ì¬ê¸°ì, 모ë¸ë§ì 모ë¸ë§ ê³ì, ì í, ë° ê°ì¢ ë³ì ë±ì í¬í¨íë¤.When the data processed by the input data processing unit 121 is input, the modeling unit 123 models the input data to calculate a diagnostic modeling value (step S110). Here, the modeling includes modeling coefficients, types, various variables, and the like.
ì´í, ì¤ìì²ë¦¬ë¶(150)ë ë©ëª¨ë¦¬(180)ì í´ë¹ ì¼ì(110)ì ëí 참조 모ë¸ë§ê°ì´ ì¡´ì¬íëì§ íë¨íë¤(ë¨ê³ S110). ì´ë, ì기 참조 모ë¸ë§ê°ì, í´ë¹ ì¼ì(110)ê° ì ììíì¼ ë 미리 모ë¸ë§ë í´ë¹ ì¼ìì ì¼ì ì í¸ì ëí 모ë¸ë§ê°ì´ë¤.Thereafter, the CPU 150 determines whether a reference modeling value for the corresponding sensor 110 exists in the memory 180 (step S110). In this case, the reference modeling value is a modeling value of a sensor signal of a corresponding modeled model when the corresponding sensor 110 is in a normal state.
ë¨ê³ 120ì íë¨ê²°ê³¼, ë©ëª¨ë¦¬(180)ì í´ë¹ ì¼ì(110)ì ëí 참조 모ë¸ë§ê°ì´ ì¡´ì¬íì§ ìë ê²½ì°, í´ë¹ ì¼ì(110)ê° ì²ì ìëëë ê²ì´ë¼ê³ ê°ì£¼íê³ , í´ë¹ ì¼ì(110)ë¡ë¶í° ì²ì ì ë ¥ëë ë°ì´í°ë¥¼ 참조 모ë¸ë§ê°ì¼ë¡ íë¨íì¬ ë©ëª¨ë¦¬(180)ì ì ì¥íë¤.As a result of the determination of step 120, when there is no reference modeling value for the sensor 110 in the memory 180, it is assumed that the sensor 110 is first started, and data first input from the sensor 110 is assumed. It is determined as a reference modeling value and stored in the memory 180.
íí¸, ë¨ê³ 120ì íë¨ê²°ê³¼, ë©ëª¨ë¦¬(180)ì í´ë¹ ì¼ì(110)ì ëí 참조 모ë¸ë§ê°ì´ ì¡´ì¬íë ê²½ì°, ê³ ì¥ì§ë¨ë¶(130)ë ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ë©ëª¨ë¦¬(180)ì ì ì¥ë í´ë¹ ì¼ìì 참조 모ë¸ë§ê°ì ìê´ë를 ë¹êµíì¬ í´ë¹ ì¼ì(110)ì ê³ ì¥ ì 무를 ì§ë¨íë¤(ë¨ê³ S130).On the other hand, if the reference modeling value for the sensor 110 exists in the memory 180 as a result of the determination in step 120, the failure diagnosis unit 130 references the diagnostic modeling value and the corresponding sensor stored in the memory 180. The degree of failure of the corresponding sensor 110 is diagnosed by comparing the correlation between the modeling values (step S130).
ë¨ê³ S130ì íë¨ê²°ê³¼ í´ë¹ ì¼ì(110)ê° ê³ ì¥ì¸ ê²ì¼ë¡ íë¨ëë©´, ê³ ì¥ì í íë¨ë¶(140)ë ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ë©ëª¨ë¦¬(180)ì ì ì¥ë ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì íë¨íë¤(ë¨ê³ S150).If it is determined in step S130 that the corresponding sensor 110 is a failure, the failure type determination unit 140 compares the correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data stored in the memory 180. The failure type of the corresponding sensor 110 is determined (step S150).
ì´ë, ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ë©ëª¨ë¦¬(180)ì ì ì¥ë ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì íë¨íë ë¨ê³ë, í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì íë¨í기 ìí´ ì기 ì§ë¨ 모ë¸ë§ê°ì ì°ìì±, íí ë° ëë ì´ê° ì¤ íë ì´ìì ì´ì©íë ê²ì´ ë°ëì§íë¤.In this case, comparing the correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data stored in the memory 180 to determine a failure type of the corresponding sensor 110 may include a failure type of the corresponding sensor 110. It is preferable to use one or more of the continuity, shape, and delay value of the diagnostic modeling value to determine.
ì´í, ë¨ê³ S150ì ìí´ í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì´ íë¨ëë©´, ì¤ìì²ë¦¬ë¶(150)ë ì¶ë ¥ë¶(190)를 íµí´ í´ë¹ ì¼ì(110)ì ê³ ì¥ ì íì ê´í ë°ì´í°ê° ì¶ë ¥ëëë¡ ì²ë¦¬íë¤(ë¨ê³ S160). ì´ë, ìì±, í
ì¤í¸, ë° ê·¸ëí를 ì´ì©íì¬ ì¬ì©ììê² ì¶ë ¥íë ê²ì´ ë°ëì§íë¤.
Subsequently, when the failure type of the corresponding sensor 110 is determined by step S150, the central processing unit 150 processes the data regarding the failure type of the corresponding sensor 110 through the output unit 190 (step S160). ). At this time, it is preferable to output to the user using voice, text, and graph.
ì´ìììë 본 ë°ëª
ì í¹ì ì ë°ëì§í ì¤ììì ëí´ì ëìíê³ ì¤ëª
íìë¤. ê·¸ë¬ë 본 ë°ëª
ì ìì í ì¤ìììë§ êµíëë ê²ì ìëë©°, 본 ë°ëª
ì´ ìíë 기ì ë¶ì¼ìì íµìì ì§ìì ê°ì§ ìë¼ë©´ 본 ë°ëª
ì 기ì ì ì¬ìì ë²ì´ë¨ì´ ìì´ ì¼ë§ë ì§ ë¤ìíê² ë³ê²½ ì¤ìí ì ìì ê²ì´ë¤. ë°ë¼ì 본 ë°ëª
ì ê¶ë¦¬ë²ìë í¹ì ì¤ììì íì ëë ê²ì´ ìëë¼, 첨ë¶ë í¹íì²êµ¬ë²ìì ìí´ ì í´ì§ë ê²ì¼ë¡ í´ìëì´ì¼ í ê²ì´ë¤.
The present invention has been shown and described with respect to specific preferred embodiments thereof. However, the present invention is not limited to the above-described embodiments, and various changes and modifications may be made without departing from the technical spirit of the present invention by those skilled in the art. Accordingly, the scope of the present invention should be construed as being determined not by the specific embodiments but by the appended claims.
100 : ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ 110 : ì¼ì
120 : ì¼ìì í¸ ì
ë ¥ë¶ 121 : ì
ë ¥ ë°ì´í° ê°ê³µë¶
123 : 모ë¸ë§ë¶ 130 : ê³ ì¥ ì§ë¨ë¶
140 : ê³ ì¥ì í íë¨ë¶ 150 : ì¤ìì²ë¦¬ë¶
160 : ì ìë¶ 170 : íµì ë¶
180 : ë©ëª¨ë¦¬ 190 : ì¶ë ¥ë¶100: general-purpose sensor self-diagnostic device 110: sensor
120: sensor signal input unit 121: input data processing unit
123: modeling unit 130: fault diagnosis unit
140: failure type determination unit 150: central processing unit
160: power supply unit 170: communication unit
180: memory 190: output unit
íë ì´ìì ì¼ìë¡ë¶í° ì¼ì ì í¸ë¥¼ ì
ë ¥ë°ë ì¼ìì í¸ ì
ë ¥ë¶;
ì기 ì¼ìì í¸ ì
ë ¥ë¶ë¡ë¶í° ì
ë ¥ë°ì ì¼ìì í¸ë¥¼ ì§ë¨ ì¥ì¹ìì ì¬ì©í ì ìë ê°ì¼ë¡ ê°ê³µíë ì
ë ¥ ë°ì´í° ê°ê³µë¶;
ì기 ì
ë ¥ ë°ì´í° ê°ê³µë¶ì ìí´ ê°ê³µë ë°ì´í°ë¥¼ 모ë¸ë§íì¬ ì§ë¨ 모ë¸ë§ ê°ì ì°ì¶íë 모ë¸ë§ë¶;
ì기 ì¼ìê° ì ììíì¼ ë 미리 모ë¸ë§ ë ì기 ì¼ìì ì¼ì ì í¸ì ëí 참조 모ë¸ë§ê°ì ì ì¥íê³ , ì기 ì¼ìì ê³ ì¥ ì íì íë¨í기 ìí ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ì ì¥íë ë©ëª¨ë¦¬;
ì기 ì§ë¨ 모ë¸ë§ ê°ê³¼ ì기 ë©ëª¨ë¦¬ì ì ì¥ë í´ë¹ ì¼ìì 참조 모ë¸ë§ ê°ì ìê´ë를 ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì 무를 ì§ë¨íë ê³ ì¥ ì§ë¨ë¶; ë°
ì기 ê³ ì¥ ì§ë¨ë¶ì ìí´ í´ë¹ ì¼ìê° ê³ ì¥ì¸ ê²ì¼ë¡ íë¨ëë©´, ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨íë ê³ ì¥ì í íë¨ë¶;를 구ë¹íë ê²ì í¹ì§ì¼ë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹.
A sensor signal input unit configured to receive a sensor signal from at least one sensor;
An input data processing unit processing the sensor signal received from the sensor signal input unit into a value that can be used in a diagnostic apparatus;
A modeling unit configured to model data processed by the input data processing unit to calculate a diagnostic modeling value;
A memory for storing reference modeling values of sensor signals of the sensors that are previously modeled when the sensor is in a normal state, and storing failure type determination data for determining a failure type of the sensor;
A fault diagnosis unit comparing a correlation between the diagnostic modeling value and a reference modeling value of the corresponding sensor stored in the memory to diagnose whether the corresponding sensor has a fault; And
And a failure type determination unit for determining a failure type of the corresponding sensor by comparing the correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data when it is determined that the corresponding sensor is a failure by the failure diagnosis unit. General-purpose sensor self-diagnostic apparatus, characterized in that.
ì 1íì ìì´ì, ì기 ê³ ì¥ì í íë¨ë¶ë,
í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨í기 ìí´ ì기 ì§ë¨ 모ë¸ë§ê°ì ì°ìì±, íí ë° ëë ì´ê° ì¤ íë ì´ìì ì´ì©íë ê²ì í¹ì§ì¼ë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹.
The method of claim 1, wherein the failure type determination unit,
And at least one of a continuity, a shape, and a delay value of the diagnostic modeling value to determine a failure type of the sensor.
ì 1íì ìì´ì,
ì기 ê³ ì¥ì í íë¨ë¶ë¡ë¶í° í´ë¹ ì¼ìì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ ì
ë ¥ë°ì ìì±, í
ì¤í¸ ë° ê·¸ëí를 ì´ì©íì¬ ì¬ì©ììê² ì¶ë ¥íë ì¶ë ¥ë¶;를 ë 구ë¹íë ê²ì í¹ì§ì¼ë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹.
The method of claim 1,
And an output unit configured to receive data regarding a failure type of a corresponding sensor from the failure type determination unit and output the data to a user using voice, text, and graphs.
ì 1íì ìì´ì,
ì기 ê³ ì¥ì í íë¨ë¶ë¡ë¶í° í´ë¹ ì¼ìì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ ì
ë ¥ë°ì ì ì ëë 무ì íµì ë°©ìì ì´ì©íì¬ ì¸ë¶ì¥ì¹ë¡ ì ì¡íë íµì ë¶;를 ë 구ë¹íë ê²ì í¹ì§ì¼ë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹.
The method of claim 1,
And a communication unit which receives data on the type of failure of the corresponding sensor from the failure type determination unit and transmits the data to the external device using a wired or wireless communication method.
ì 1íì ìì´ì, ì기 ì
ë ¥ ë°ì´í° ê°ê³µë¶ë,
ì기 íë ì´ìì ì¼ìë¡ ì
ë ¥ëë ì¼ì ì í¸ê° ìë ë¡ê·¸ ì í¸ì¸ ê²½ì°, ì기 ìë ë¡ê·¸ ì í¸ë¥¼ ëì§í¸ ì í¸ë¡ ë³ííì¬ ì기 모ë¸ë§ë¶ì ì ë¬íë ê²ì í¹ì§ì¼ë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹.
The method of claim 1, wherein the input data processing unit,
And a sensor signal input to the at least one sensor is an analog signal, converting the analog signal into a digital signal and transmitting the converted analog signal to the modeling unit.
íë ì´ìì ì¼ìë¡ë¶í° ì¼ì ì í¸ë¥¼ ì
ë ¥ë°ë (A)ë¨ê³;
ì
ë ¥ë ì¼ì ì í¸ë¥¼ 모ë¸ë§íì¬ ì§ë¨ 모ë¸ë§ê°ì ì°ì¶íê³ , ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ë©ëª¨ë¦¬ì ì ì¥ë í´ë¹ ì¼ìì 참조 모ë¸ë§ê°ì ìê´ë를 ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì 무를 ì§ë¨íë (B)ë¨ê³; ë°
í´ë¹ ì¼ìê° ê³ ì¥ì¸ ê²ì¼ë¡ íë¨ëë©´, ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ë©ëª¨ë¦¬ì ì ì¥ë ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨íë (C)ë¨ê³;를 í¬í¨íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ì§ë¨ ë°©ë².
(A) receiving a sensor signal from at least one sensor;
(B) diagnosing a failure of a corresponding sensor by modeling an input sensor signal to calculate a diagnostic modeling value and comparing a correlation between the diagnostic modeling value and a reference modeling value of the corresponding sensor stored in a memory; And
And (C) determining a failure type of the corresponding sensor by comparing a correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data stored in the memory when it is determined that the corresponding sensor has a failure. How to diagnose the self-test device.
ì 6íì ìì´ì,
ì기 참조 모ë¸ë§ê°ì, í´ë¹ ì¼ìê° ì ììíì¼ ë 미리 모ë¸ë§ë í´ë¹ ì¼ìì ì¼ì ì í¸ì ëí 모ë¸ë§ê°ì¸ ê²ì í¹ì§ì¼ë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ì§ë¨ ë°©ë².
The method of claim 6,
The reference modeling value is a diagnostic method of a general-purpose sensor self-diagnosis apparatus, characterized in that the modeling value for the sensor signal of the sensor previously modeled when the sensor is in a normal state.
ì 6íì ìì´ì,
ì기 ì§ë¨ 모ë¸ë§ê°ê³¼ ì기 참조 모ë¸ë§ê°ì ìê´ëì ì기 ë©ëª¨ë¦¬ì ì ì¥ë ê³ ì¥ì ííë¨ ë°ì´í°ë¥¼ ë¹êµíì¬ í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨íë (C)ë¨ê³ë,
í´ë¹ ì¼ìì ê³ ì¥ ì íì íë¨í기 ìí´ ì기 ì§ë¨ 모ë¸ë§ê°ì ì°ìì±, íí ë° ëë ì´ê° ì¤ íë ì´ìì ì´ì©íë ê²ì í¹ì§ì¼ë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ì§ë¨ ë°©ë².
The method of claim 6,
Step (C) of determining a failure type of the corresponding sensor by comparing the correlation between the diagnostic modeling value and the reference modeling value and the failure type determination data stored in the memory,
A diagnostic method of a general-purpose sensor self-diagnostic apparatus according to claim 1, wherein one or more of the continuity, shape, and delay value of the diagnostic modeling value are used to determine a failure type of the sensor.
ì 6íì ìì´ì,
í´ë¹ ì¼ìì ê³ ì¥ ì íì ê´í ë°ì´í°ë¥¼ ìì±, í
ì¤í¸, ë° ê·¸ëí를 ì´ì©íì¬ ì¬ì©ììê² ì¶ë ¥íë (D)ë¨ê³;를 ë í¬í¨íë ê²ì í¹ì§ì¼ë¡ íë ë²ì© ì¼ì ìê° ì§ë¨ ì¥ì¹ì ì§ë¨ ë°©ë².The method of claim 6,
(D) outputting data on the type of failure of the sensor to a user using voice, text, and graphs.
Patent event code: PA01091R01D
Comment text: Patent Application
Patent event date: 20101027
2010-10-27 PA0201 Request for examination 2012-05-11 PG1501 Laying open of application 2012-06-01 PE0902 Notice of grounds for rejectionComment text: Notification of reason for refusal
Patent event date: 20120601
Patent event code: PE09021S01D
2012-11-30 E601 Decision to refuse application 2012-11-30 PE0601 Decision on rejection of patentPatent event date: 20121130
Comment text: Decision to Refuse Application
Patent event code: PE06012S01D
Patent event date: 20120601
Comment text: Notification of reason for refusal
Patent event code: PE06011S01I
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4