ì´í 첨ë¶ë ëë©´ì 참조ë¡íì¬ ë³¸ ë°ëª ì ë°ëì§í ì¤ìì를 ì¤ëª íê¸°ë¡ íë¤. Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
ë 1ì íì¤ YCbCr ì í¸ ëë¹ íì¥ë ì í¸ì ì ììì ëìí ê²ì´ë¤. 1 illustrates the color gamut of an extended signal compared to a standard YCbCr signal.
ë 1ì 참조íë©´, xì¶ì íë ì±ë¶ì í½ì ê°ì´ë©°, yì¶ì ì ì±ë¶ì í½ì ê°ì´ë¤. 110ì sYCC(standard YCbCr) ì í¸ì ì ìì(color range)ì´ê³ , 120ì sRGB(standard Red Green Blue) ì í¸ì ì ììì´ê³ , 130ì xvYCC(extended video YCbCr)ì ì ììì´ë¤. Referring to FIG. 1, the x-axis is a pixel value of the luminance component and the y-axis is a pixel value of the color component. 110 is the color gamut of the standard YCbCr (sYCC) signal, 120 is the color gamut of the standard Red Green Blue (sRGB) signal, and 130 is the color gamut of the extended video YCbCr (xvYCC).
ë 2ë 본 ë°ëª ì ë°ë¥¸ ë°ì´í° ì¡ìì ì¥ì¹ì ë¸ë¡ëì´ë¤. 2 is a block diagram of a data transmission and reception apparatus according to the present invention.
ë 2ì ë°ì´í° ì¡ìì ì¥ì¹ë HDMI ì¡ì ë¶(210)ì HDMI ìì ë¶(220)ê° HDMI ì¼ì´ë¸ë¡ ì°ê²°ëì´ ìë¤. HDMI ì¡ì ë¶(210)ë ì 1,ì 2,ì 3 TMDS ì±ë(TMDS Channel 0, TMDS Channel 1, TMDS Channel 2) ë° TMDS í´ë ì±ë(TMDS clock channel)ì íµí´ ë¹ëì¤/ì¤ëì¤ ë° ì ì´/ìí ë°ì´í°ë¥¼ HDMI ìì ë¶(220)ë¡ ì ì¡íë¤. In the data transmitting and receiving apparatus of FIG. 2, the HDMI transmitter 210 and the HDMI receiver 220 are connected with an HDMI cable. The HDMI transmitter 210 displays the video / audio and control / status data through the first, second, and third TMDS channels (TMDS Channel 0, TMDS Channel 1, TMDS Channel 2) and TMDS clock channel. It transmits to the receiver 220.
HDMI ì¡ì ë¶(210)ë ë¹ëì¤ ë°ì´í° ë° ì¤ëì¤ ë°ì´í° ë° ë³´ì¡° ë°ì´í° ë° í리ì°ë¸ ë°ì´í°ë¥¼ ì¸ì½ë©íê³ , íë ì´ìì TMDS ì±ëë³ë¡ ë¹ëì¤ ë°ì´í° êµ¬ê° ë° ë°ì´í° ìì¼ë°ë êµ¬ê° ë° ì ì´ êµ¬ê° ëì ì¸ì½ë©ë ë¹ëì¤ ë°ì´í° ë° ë³´ì¡° ë°ì´í° ë° í리ì°ë¸ ë°ì´í°ë¥¼ ì ì¡íê³ , ë°ì´í° ìì¼ë°ë êµ¬ê° ëë ì ì´ êµ¬ê° ëì ë°ì´í° ì ì¡ì ìí´ íìí ë¹í¸ë¥¼ ì ì¸íê³ ë¹ì´ìë ë¹í¸ë¤ì ì ìì ì 보를 í ë¹íì¬ ì¸ì½ë©ë ë°ì´í°ì í¨ê» ì ì¡íë¤.The HDMI transmitter 210 encodes video data, audio data, auxiliary data, and preamble data, and transmits encoded video data, auxiliary data, and preamble data during one or more TMDS channels during the video data section, the data island section, and the control section. In addition, except for the bits necessary for data transmission during the data island period or the control period, color gamut information is allocated to the empty bits and transmitted together with the encoded data.
HDMI ìì ë¶(220)ë HDMI ì¡ì ë¶(210)ë¡ë¶í° ì 1,ì 2,ì 3 TMDS ë©í°ë¯¸ëì´ ì í¸ ì±ëë¡ë¶í° ë¹ëì¤ ë°ì´í° êµ¬ê° ë° ë°ì´í° ìì¼ë°ë êµ¬ê° ë° ì ì´ êµ¬ê° ëì ë¹ëì¤/ì¤ëì¤ ë° ì ì´/ìí ë°ì´í°ë¥¼ ëì½ë©íê³ , ëí ë°ì´í° ìì¼ë°ë êµ¬ê° ë° ì ì´ êµ¬ê°ì í¬í¨ë ì ìì ì 보를 ì¶ì¶íê³ , ê·¸ ì¶ì¶ë ì ìì ì ë³´ì ë°ë¼ ì ì¬í ë²ì를 ì¡°ì íë¤.The HDMI receiver 220 decodes the video / audio and control / status data from the first, second, and third TMDS multimedia signal channels from the HDMI transmitter 210 during the video data interval, the data island interval, and the control interval. Color gamut information included in the data island section and the control section are extracted, and the color reproduction range is adjusted according to the extracted color gamut information.
ë 3ì 720 x 480p(pixel) ë¹ëì¤ íë ììì TMDS 구ê°ë¤ì ëìí ê²ì´ë¤. 3 illustrates TMDS intervals in a 720 x 480p (pixel) video frame.
ë 3ì 참조íë©´, HDMI ê·ê²©ì ì ì¡ ìì¤í ì ìí ë기 ì í¸(HSYNC) ë° ìì§ ë기 ì í¸(VSYNC)ì í¬í¨ë ë¹ëì¤ íë ìì TMDS ë°©ìì¼ë¡ ì ì¡íë©°, ëí ì í¨ íìì 720 í½ì , ì í¨ ë¼ì¸ì 480 ë¼ì¸ì ì í¨ ìì ì í¸ ìì´ë¦¬ì´ë¥¼ ì ì¸í ë¸ëí¹ êµ¬ê°(ìí ë°©í¥ 139 íì, ìì§ ë°©í¥ 45 ë¼ì¸)ì ììì ìì± ì í¸ì ë³´ì¡° ì ì´ ì í¸ë¤ì TMDS ë°©ìì¼ë¡ ì ì¡íë¤. TMDS ì ì¡ ë°©ìì ë¹ëì¤ ë°ì´í° 구ê°(video data period), ë°ì´í° ìì¼ë°ë 구ê°(data island period), ì ì´ êµ¬ê°(control period)ì í¬í¨íë¤. Referring to FIG. 3, the HDMI standard transmission system transmits a video frame included in a horizontal sync signal HSYNC and a vertical sync signal VSYNC by using a TMDS method, and also includes 720 pixels of effective pixels and 480 lines of effective lines. Audio signals and auxiliary control signals are transmitted in a TMDS scheme in a blanking section (139 pixels in the horizontal direction and 45 lines in the vertical direction) except for the effective video signal area. The TMDS transmission scheme includes a video data period, a data island period, and a control period.
ë¹ëì¤ ë°ì´í° êµ¬ê° ëì, ì±ëë¹ 8ë¹í¸ë¡ì ì´ 24ë¹í¸ì ì¡í°ë¸ ë¹ëì¤ ë°ì´í°ê° ì ì¡ëë¤. ê·¸ë¦¬ê³ ë°ì´í° ìì¼ë°ë êµ¬ê° ëì, ì±ëë¹ 4ë¹í¸ ì´ 12 ë¹í¸ì ì¤ëì¤ ë°ì´í°ì ë³´ì¡° ë°ì´í°(auxiliary data)ê° ì¼ë ¨ì í¨í· ë¨ìë¡ ì ì¡ëë¤. ê·¸ë¦¬ê³ ì ì´ êµ¬ê° ëì, í리ì°ë¸(preamble) ë°ì´í°ê° ì ì¡ëë¤. ì ì´ êµ¬ê°ëì ê° ì±ëë¹ 2ë¹í¸ ì¦, ì´ 6ë¹í¸ë ê°ê° HSYNC, VSYNC, CTL0, CTL1, CTL2, CTL3를 í ë¹íë¤. During the video data interval, a total of 24 bits of active video data are transmitted as 8 bits per channel. During the data island period, a total of 12 bits of audio data and auxiliary data of 4 bits per channel are transmitted in a series of packet units. During the control period, preamble data is transmitted. During the control period, 2 bits, that is, 6 bits in total, are allocated to HSYNC, VSYNC, CTL0, CTL1, CTL2, and CTL3, respectively.
ì ì´ êµ¬ê°ì ë§ì§ë§ì ìì¹íë í리ì°ë¸ ë°ì´í°ë CTLx(CTL0 - CTL3) ë¹í¸ë¤ì ì¤ì ëì´ ì ì´ êµ¬ê° ë¤ìì 구ê°ì´ ë¹ëì¤ ë°ì´í° êµ¬ê° ëë ë°ì´í° ìì¼ë°ë 구ê°ìì ìë ¤ì¤ë¤. ë 4ì ëìë ë°ì ê°ì´ ë¹ëì¤ ë°ì´í° êµ¬ê° ëë ë°ì´í° ìì¼ë°ë 구ê°ì CTLx(CTL0 - CTL3) ë¹í¸ë¤ì ë°ë¼ ê²°ì ëë¤.The preamble data located at the end of the control section is set in the CTLx (CTL0-CTL3) bits to indicate that the section following the control section is a video data section or a data island section. As shown in FIG. 4, the video data section or the data island section is determined according to the CTLx (CTL0 to CTL3) bits.
ë 5ë 본 ë°ëª ì ì ì©í기 ìí´ íµìì ì¸ HDMI ê·ê²©ì TMDS 구ê°ë¤ê³¼ ì¸ì½ ë©ì ëìí ê²ì´ë¤.Figure 5 shows the TMDS intervals and encoding of the conventional HDMI standard for applying the present invention.
TMDS ì±ëë¤(TMDS Channel 0, 1, 2)ì ê°ê° ë¹ëì¤ ë°ì´í° 구ê°, ë°ì´í° ìì¼ë°ë 구ê°, ì ì´ êµ¬ê°ë¤ë¡ 구ì±ëë¤. TMDS channels 0, 1, and 2 are composed of a video data section, a data island section, and a control section, respectively.
ë¹ëì¤ ë°ì´í° 구ê°ë¤ì ì¡í°ë¸ ë¹ëì¤ ë¼ì¸ì í½ì ë¤ì ì ë¬í기 ìí´ ì¬ì©ëë¤. ì¡í°ë¸ ë¹ëì¤ êµ¬ê°ë¤ ëì 24ë¹í¸ì í½ì ë°ì´í°ê° ë¹ëì¤ ì¸ì½ë© ìê³ ë¦¬ë¬ì ì¬ì©íì¬ ì¸ì½ëëë¤. Video data intervals are used to convey the pixels of the active video line. 24-bit pixel data is encoded using the video encoding algorithm during the active video intervals.
ë°ì´í° ìì¼ë°ë 구ê°ë¤ì ì¤ëì¤ ìí ë°ì´í°ì ë³´ì¡° ë°ì´í°ì í¨í·ë¤ì ì ë¬í기 ìí´ ì¬ì©ëë¤. ë°ì´í° ìì¼ë°ë 구ê°ë¤ ëì 3ê°ì TMDS ì±ëë¤ì ê°ê°ì TMDS Error Reduction Coding(TERC4)를 ì¬ì©íì¬ 4ë¹í¸ ì ë ¥ ìëë¡ë¶í° ì¸ì½ëë ì¼ë ¨ì 10ë¹í¸ ìºë¦í°ë¥¼ ì ì¡íë¤. Data island intervals are used to carry packets of audio sample data and auxiliary data. During the data island period, each of the three TMDS channels transmits a series of 10-bit characters encoded from a 4-bit input word using TMDS Error Reduction Coding (TERC4).
ì ì´ êµ¬ê°ë¤ì í리ì°ë¸ ë°ì´í°ë¥¼ ì ë¬í기 ìí´ ì¬ì©ëë¤. ëí ì ì´ êµ¬ê°ì ìºë¦í° ëê¸°ì© ì±í¬ì ìí´ ì¬ì©ëë¤. ì¡í°ë¸ ë¹ëì¤ êµ¬ê°ë¤ ëì 6ë¹í¸ì ì ì´ë°ì´í°ê° ì ì´ ì¸ì½ë© ìê³ ë¦¬ë¬ì ì¬ì©íì¬ ì¸ì½ëëë¤. Control intervals are used to convey preamble data. The control section is also used by the character sync sink. Six bits of control data are encoded using the control encoding algorithm during the active video intervals.
ë¤ì ë 5를 ë³´ë©´, ë°ì´í° ìì¼ë°ë 구ê°ê³¼ ì ì´ êµ¬ê°ììë ê° ì±ëë¹ 8ë¹í¸ì¤ 4ë¹í¸(D0 - D3)ë§ í리ì°ë¸ ëë ë³´ì¡° ë°ì´í°ì í¨í·ì ì ì¡íëë° ì¬ì©ëë¤(ê° ì±ëë¹ í리ì°ë¸ì ìí´ 2ë¹í¸, ë³´ì¡° ë°ì´í°ë¥¼ ìí´ 4ë¹í¸ë§ ì¬ì©). ì¦, ë°ì´í° ìì¼ë°ë 구ê°ê³¼ ì ì´ êµ¬ê°ìì D0 - D3 ë¹í¸ë ë°ì´í° ì ì¡ì ìí´ ì¬ì©ëê³ , D4 - D7 ë¹í¸ë ì ë³´ ìì´ ë¹ì´ ìë ìíê° ëë¤. Referring back to FIG. 5, only 4 bits (D0-D3) of 8 bits per channel are used to transmit a preamble or a packet of auxiliary data in the data island period and the control period (2 bits for each preamble and 2 bits for auxiliary data). 4 bits only). That is, in the data island section and the control section, bits D0-D3 are used for data transmission, and bits D4-D7 are empty without information.
ë 6ì 본 ë°ëª ì ì ì©í TMDS 구ê°ë¤ê³¼ ì¸ì½ë©ì ëìí ê²ì´ë¤.6 illustrates TMDS intervals and encoding to which the present invention is applied.
ë 6ì 참조íë©´, ë°ì´í° ìì¼ë°ë êµ¬ê° ëë ì ì´ êµ¬ê° ëì ì¬ì©íê³ ìì§ ìì ì ì¡ ë¹í¸ë¤(D4 - D7)ì ì ì¬í ë²ì를 ëíë´ë ì ìì ì 보를 í ë¹íë¤. ì¼ ì¤ììë¡ sRGBì ì ìì ì ë³´ë "0000", BT.1361ì ì ìì ì ë³´ë "0001", sYCCì ì ìì ì ë³´ë "0010", xvYCCì ì ìì ì ë³´ë "0011"ë¡ ì¤ì í ì ìë¤. 본 ë°ëª ì ì¤ììììë ì ì¡ ë¹í¸ë¤(D4 - D7)ì xvYCCì ì ìì ì 보를 ì¤ì íë¤. Referring to FIG. 6, color gamut information indicating a color reproduction range is allocated to the transmission bits D4 to D7 not used during the data island period or the control period. In an embodiment, the color gamut information of sRGB may be set to "0000", the color gamut information of BT.1361 is set to "0001", the color gamut information of sYCC is set to "0010", and the color gamut information of xvYCC is set to "0011". In an embodiment of the present invention, color gamut information of xvYCC is set in the transmission bits D4 to D7.
ë°ë¼ì HDMI ì¡ì ë¶(210)ìì ë°ì´í° ìì¼ë°ë êµ¬ê° ëë ì ì´ êµ¬ê° ëì ì¬ì©íê³ ìì§ ìì ì ì¡ ë¹í¸ë¤(D4 - D7)ì ì ì¬í ë²ì를 íì¥íë ì ìì ì 보를 ì ì¡íë©´ HDMI ìì ë¶(220)ë ì ìì ì 보를 ëì½ë©íì¬ íì¥ë ììì ì ì¬íì ê°ë¥íê² íë¤. Therefore, when the HDMI transmitter 210 transmits color gamut information that extends the color gamut to transmission bits D4 to D7 that are not used during the data island period or the control period, the HDMI receiver 220 receives the color gamut information. Decoded to enable color reproduction of the extended area.
ë 7ì 본 ë°ëª ì ë°ë¥¸ ë°ì´í° ì¡ìì ì¥ì¹ìì ë°ì´í° ì¸ì½ë© ë° ëì½ë© ë¡ì§ì ëíë´ë ë¸ë¡ëì´ë¤. 7 is a block diagram showing data encoding and decoding logic in a data transmission and reception apparatus according to the present invention.
HDMI ì¡ì ë¶(210)ì HDMI ìì ë¶(220)ë TMDS ë§í¬ë¥¼ íµí´ ë°ì´í°ë¥¼ ì£¼ê³ ë°ëë¤. The HDMI transmitter 210 and the HDMI receiver 220 exchange data through a TMDS link.
HDMI ì¡ì ë¶(210)ë ì 1ì¸ì½ë© ë¡ì§(712), ì 2ì¸ì½ë© ë¡ì§(714), ì 3ì¸ì½ë© ë¡ì§(716)ì¼ë¡ 구ì±ëë¤. The HDMI transmitter 210 includes a first encoding logic 712, a second encoding logic 714, and a third encoding logic 716.
ì 1ì¸ì½ë© ë¡ì§(712)ì ì 1TMDS ì±ë(channel 0)ì íµí´ ì ì¡ë ì¤í¸ë¦¼ë¤ì ì¸ì½ë©íê³ ê·¸ ì¸ì½ë©ë ë¹í¸ë¤ì ì§ë ¬ ë³ííë¤. ì¦, ì 1ì¸ì½ë© ë¡ì§(712)ì ë°ì´í° ì¸ìì´ë¸ ì í¸ì ìëµíì¬ í½ì ì±ë¶(D7 - D0), ìí/ìì§ ë기(D1 - D0), ë³´ì¡° ë°ì´í°(D3 - D0), ì ìì ì ë³´(D4 - D0)를 ì íì ì¼ë¡ ì¸ì½ë©íë¤. ì´ë í½ì ì±ë¶ì Blue ì±ë¶ì´ë©°, ë³´ì¡° ë°ì´í°ë í¨í· í¤ëì´ë¤. The first encoding logic 712 encodes the streams to be transmitted over the first TMDS channel (channel 0) and serializes the encoded bits. That is, the first encoding logic 712 is configured to respond to the data enable signal in response to the pixel components D7 to D0, horizontal / vertical synchronization D1 to D0, auxiliary data D3 to D0, and color gamut information D4 to D0. ) Is optionally encoded. In this case, the pixel component is a blue component and the auxiliary data is a packet header.
ì 2ì¸ì½ë© ë¡ì§(714)ì ì 2TMDS ì±ë(channel 1)ì íµí´ ì ì¡ë ì¤í¸ë¦¼ë¤ì ì¸ì½ë©íê³ ê·¸ ì¸ì½ë©ë ë¹í¸ë¤ì ì§ë ¬ ë³ííë¤. ì¦, ì 2ì¸ì½ë© ë¡ì§(714)ì ë°ì´í° ì¸ìì´ë¸ ì í¸ì ìëµíì¬ í½ì ì±ë¶(D7 - D0), CTL0/CTL1(D1 - D0), ë³´ì¡° ë°ì´í°(D3 - D0), ì ìì ì ë³´(D4 - D0)를 ì íì ì¼ë¡ ì¸ì½ë©íë¤. ì´ë í½ì ì±ë¶ì Green ì±ë¶ì´ë©°, ë³´ì¡° ë°ì´í°ë ì¤ëì¤ ìíì´ë¤. The second encoding logic 714 encodes the streams to be transmitted over the second TMDS channel (channel 1) and serializes the encoded bits. That is, the second encoding logic 714 is configured to respond to the data enable signal in response to the pixel components D7-D0, CTL0 / CTL1 (D1-D0), auxiliary data (D3-D0), and color gamut information (D4-D0). Optionally encode In this case, the pixel component is a green component and the auxiliary data is an audio sample.
ì 3ì¸ì½ë© ë¡ì§(716)ì ì 3TMDS ì±ë(channel 2)ì íµí´ ì ì¡ë ì¤í¸ë¦¼ë¤ìì¸ì½ë©íê³ ê·¸ ì¸ì½ë©ë ë¹í¸ë¤ì ì§ë ¬ ë³ííë¤. ì¦, ì 3ì¸ì½ë© ë¡ì§(716)ì ë°ì´í° ì¸ìì´ë¸ ì í¸ì ìëµíì¬ í½ì ì±ë¶(D7 - D0), CTL2/CTL3(D1 - D0), ë³´ì¡° ë°ì´í°(D3 - D0), ì ìì ì ë³´(D4 - D0)를 ì íì ì¼ë¡ ì¸ì½ë©íë¤. ì´ë í½ì ì±ë¶ì Red ì±ë¶ì´ë©°, ë³´ì¡° ë°ì´í°ë ì¤ëì¤ ìíì´ë¤. The third encoding logic 716 encodes the streams to be transmitted over the third TMDS channel 2 and serializes the encoded bits. That is, the third encoding logic 716 may perform pixel components D7-D0, CTL2 / CTL3 (D1-D0), auxiliary data (D3-D0), and color gamut information (D4-D0) in response to the data enable signal. Optionally encode In this case, the pixel component is a red component and the auxiliary data is an audio sample.
íí¸, HDMI ìì ë¶(220)ë ì 1ëì½ë© ë¡ì§(722), ì 2ëì½ë© ë¡ì§(724), ì 3ëì½ë© ë¡ì§(726)ì¼ë¡ 구ì±ëë¤. Meanwhile, the HDMI receiver 220 includes a first decoding logic 722, a second decoding logic 724, and a third decoding logic 726.
ì 1ëì½ë© ë¡ì§(722)ì ì 1TMDS ì±ë(channel 0)ì íµí´ ìì ë ë°ì´í°ë¥¼ ëì½ë©íê³ ê·¸ ëì½ë©ë ë¹í¸ë¤ì ë³ë ¬ ë³ííë¤. ì¦, ì 1ëì½ë© ë¡ì§(722)ì ë°ì´í° ì¸ìì´ë¸ ì í¸ì ìëµíì¬ í½ì ì±ë¶(D7 - D0), ìí/ìì§ ë기(D1 - D0), ë³´ì¡° ë°ì´í°(D3 - D0), ì ìì ì ë³´(D4 - D0)를 ì íì ì¼ë¡ 복구íë¤.The first decoding logic 722 decodes the data received over the first TMDS channel (channel 0) and converts the decoded bits in parallel. That is, the first decoding logic 722 is configured to respond to the data enable signal in response to the pixel components D7 to D0, horizontal / vertical synchronization D1 to D0, auxiliary data D3 to D0, and color gamut information D4 to D0. Selectively recover).
ì 2ëì½ë© ë¡ì§(724)ì ì 2TMDS ì±ë(channel 1)ì íµí´ ìì ë ë°ì´í°ë¥¼ ëì½ë©íê³ ê·¸ ëì½ë©ë ë¹í¸ë¤ì ë³ë ¬ ë³ííë¤. ì¦, ì 2ëì½ë© ë¡ì§(724)ì ë°ì´í° ì¸ìì´ë¸ ì í¸ì ìëµíì¬ í½ì ì±ë¶(D7 - D0), CTL0/CTL1(D1 - D0), ë³´ì¡° ë°ì´í°(D3 - D0), ì ìì ì ë³´(D4 - D0)를 ì íì ì¼ë¡ 복구íë¤.The second decoding logic 724 decodes the data received over the second TMDS channel (channel 1) and converts the decoded bits in parallel. That is, the second decoding logic 724 may include the pixel components D7-D0, CTL0 / CTL1 (D1-D0), auxiliary data (D3-D0), and color gamut information (D4-D0) in response to the data enable signal. Selectively recover
ì 3ëì½ë© ë¡ì§(726)ì ì 3TMDS ì±ë(channel 2)ì íµí´ ìì ë ë°ì´í°ë¥¼ ëì½ë©íê³ ê·¸ ëì½ë©ë ë¹í¸ë¤ì ë³ë ¬ ë³ííë¤. ì¦, ì 3ëì½ë© ë¡ì§(726)ì ë°ì´í° ì¸ìì´ë¸ ì í¸ì ìëµíì¬ í½ì ì±ë¶(D7 - D0), CTL2/CTL3(D1 - D0), ë³´ì¡° ë°ì´í°(D3 - D0), ì ìì ì ë³´(D4 - D0)를 ì íì ì¼ë¡ 복구íë¤.The third decoding logic 726 decodes the data received over the third TMDS channel 2 and converts the decoded bits in parallel. That is, the third decoding logic 726 may perform the pixel components D7-D0, CTL2 / CTL3 (D1-D0), auxiliary data (D3-D0), and color gamut information (D4-D0) in response to the data enable signal. Selectively recover
ë 8ì ë 7ì ì¸ì½ë© ë¡ì§ë¶ ë° ëì½ë© ë¡ì§ë¶ì ìì¸ ë¸ë¡ëì´ë¤.FIG. 8 is a detailed block diagram of the encoding logic unit and the decoding logic unit of FIG. 7.
ì¸ì½ë© ë¡ì§ë¶(810)ë HDMI ë°ì´í° ìì±ë¶(812), ì ìì ì ë³´ ìì±ë¶(814), ê°ì°ë¶(816)를 í¬í¨íë¤. The encoding logic unit 810 includes an HDMI data generator 812, a color gamut information generator 814, and an adder 816.
ëì½ë© ë¡ì§ë¶(820)ë ì í¸ ì²ë¦¬ë¶(822), ì ìì ì ë³´ ì¶ì¶ë¶(824)를 í¬í¨íë¤. The decoding logic unit 820 includes a signal processor 822 and a color gamut information extractor 824.
HDMI ë°ì´í° ìì±ë¶(812)ë ë¹ëì¤/ì¤ëì¤ ì¤í¸ë¦¼ ë° ë³´ì¡° ë°ì´í° ë° í리ì°ë¸ ì¤í¸ë¦¼ì ì¸ì½ë©íê³ , ê·¸ ì¸ì½ë©ë ì¤í¸ë¦¼ì TMDS ì±ëì ë¹ëì¤ ë°ì´í° êµ¬ê° ë° ë°ì´í° ìì¼ë°ë êµ¬ê° ë° ì ì´ êµ¬ê°ë´ ë¹í¸ë¤ì í ë¹íë¤. The HDMI data generator 812 encodes the video / audio stream and the auxiliary data and the preamble stream, and allocates the encoded stream to the bits in the video data section and the data island section and the control section of the TMDS channel.
ì ìì ì ë³´ ìì±ë¶(814)ë ì ìì ì½ë를 ìì±íê³ , ê·¸ ìì±ë ì ìì ì 보를 TMDS ì±ëì ë°ì´í° ìì¼ë°ë êµ¬ê° ëë ì ì´ êµ¬ê°ë´ ì¬ì©ëì§ ìë ë¹í¸ë¤ì í ë¹íë¤.The color gamut information generator 814 generates a color gamut code and allocates the generated color gamut information to bits not used in the data island section or the control section of the TMDS channel.
ê°ì°ë¶(816)ë HDMI ë°ì´í° ìì±ë¶(812)ìì ìì±ë ë°ì´í°ì ì ìì ì ë³´ìì±ë¶(814)ìì ìì±ë ì ìì ì 보를 í©ì°íë¤.The adder 816 adds the data generated by the HDMI data generator 812 and the color gamut information generated by the color gamut information generator 814.
ì ìì ì ë³´ ì¶ì¶ë¶(824)ë TMDS ì±ëë¤ì ë°ì´í° ìì¼ë°ë êµ¬ê° ëë ì ì´ êµ¬ê°ì¼ë¡ ë¶í° ì ìì ì 보를 ì¶ì¶íë¤.The color gamut information extractor 824 extracts color gamut information from a data island section or a control section of TMDS channels.
ì í¸ ì²ë¦¬ë¶(822)ë ì ìì ì ë³´ ì¶ì¶ë¶(850)ë¡ë¶í° ì¶ì¶ë ì ìì ì ë³´ì ë°ë¼ ì ìì ì ì´ ì í¸ë¥¼ ì¶ë ¥íë¤. The signal processor 822 outputs a color gamut control signal according to the color gamut information extracted from the color gamut information extractor 850.
ëì¤íë ì´ë¶(830)ë ì í¸ ì²ë¦¬ë¶(822)ìì ì¶ë ¥ëë ì ìì ì ì´ ì í¸ì ë°ë¼ ëì¤íë ì´ì ì ììì ì¡°ì íë¤.The display unit 830 adjusts the color gamut of the display according to the color gamut control signal output from the signal processor 822.
ë 9ë ë 8ì ì ìì ì ë³´ ìì±ë¶(814)ì ì ìì ì ë³´ ìì± ë°©ë²ì ì¼ì¤ì ìì´ë¤. FIG. 9 is an embodiment of a method of generating color gamut information of the color gamut information generator 814 of FIG. 8.
ë 9를 참조íë©´, sRGBì ì ìì ì ë³´ë "0000", BT.1361ì ì ìì ì ë³´ë "0001", sYCCì ì ìì ì ë³´ë "0010", xvYCCì ì ìì ì ë³´ë "0011"ë¡ ì¤ì í ì ìë¤.Referring to FIG. 9, color gamut information of sRGB may be set to "0000", color gamut information of BT.1361 is set to "0001", color gamut information of sYCC is set to "0010", and color gamut information of xvYCC is set to "0011". have.
ë 10ì 본 ë°ëª ì ë°ë¥¸ ë°ì´í° ì¡ì ë°©ë²ì íë¦ëì´ë¤.10 is a flowchart of a data transmission method according to the present invention.
먼ì , ì¡ì 기 ë° ìì 기 ì¬ì´ì íë ì´ìì TMDS ì í¸ ì±ëì íì±íë¤(1010 ê³¼ì ). First, one or more TMDS signal channels are formed between the transmitter and the receiver (step 1010).
ì´ì´ì, ë¹ëì¤ ì¤í¸ë¦¼ ë° ì¤ëì¤ ì¤í¸ë¦¼ ë° ë³´ì¡° ì¤í¸ë¦¼ ë° í리ì°ë¸ ì¤í¸ë¦¼ë¥¼ ì¸ì½ë©íê³ (1020 ê³¼ì ), ëí ì ìì ì ë³´ì í´ë¹íë ì ìì ì 보를 ìì±íë¤(1030 ê³¼ì ).Subsequently, the video stream, the audio stream, the auxiliary stream, and the preamble stream are encoded (step 1020), and color gamut information corresponding to the color gamut information is generated (step 1030).
ì´ì´ì, ê° TMDS ì í¸ ì±ëë³ë¡ ë¹ëì¤ ë°ì´í° êµ¬ê° ë° ë°ì´í° ìì¼ë°ë êµ¬ê° ë° ì ì´ êµ¬ê° ëì ì¸ì½ë©ë ë¹ëì¤ ë°ì´í° ë° ë³´ì¡° ë°ì´í° ë° í리ì°ë¸ ë°ì´í°ë¥¼ ì ì¡íë¤(1040 ê³¼ì ). Subsequently, encoded video data, auxiliary data, and preamble data are transmitted for each TMDS signal channel during the video data section, the data island section, and the control section (step 1040).
ì´ì´ì, ë°ì´í° ìì¼ë°ë êµ¬ê° ëë ì ì´ êµ¬ê° ëì ì¬ì©íê³ ìì§ ìì ì ì¡ ë¹í¸ë¤ì ì ìì ì 보를 í ë¹íì¬ ì¸ì½ë©ë ë°ì´í°ì í¨ê» ì ì¡íë¤(1050 ê³¼ì ).Subsequently, color gamut information is allocated to transmission bits that are not in use during the data island period or the control period and transmitted together with the encoded data (step 1050).
ë 11ì 본 ë°ëª ì ë°ë¥¸ ë°ì´í° ìì ë°©ë²ì íë¦ëì´ë¤.11 is a flowchart of a data receiving method according to the present invention.
먼ì , ì¡ì 기 ë° ìì 기 ì¬ì´ì íë ì´ìì TMDS ì í¸ ì±ëì íì±íë¤. ì´ì´ì, ê° ì±ëë³ë¡ ë¹ëì¤ ë°ì´í° êµ¬ê° ë° ë°ì´í° ìì¼ë°ë êµ¬ê° ë° ì ì´ êµ¬ê° ëì ë°ì´í°ë¥¼ ìì íë¤(1110 ê³¼ì ).First, one or more TMDS signal channels are formed between the transmitter and the receiver. Subsequently, data is received during the video data section, the data island section, and the control section for each channel (step 1110).
ì´ì´ì, ìì ë ë°ì´í° ìì¼ë°ë êµ¬ê° ë° ì ì´ êµ¬ê°ì í¬í¨ë ì ìì ì 보를 ì¶ì¶íë¤(1120 ê³¼ì ).Subsequently, color gamut information included in the received data island section and the control section is extracted (step 1120).
ì´ì´ì, ì¶ì¶ë ì ìì ì ë³´ì ë°ë¼ ëì¤íë ì´ ììì ì¡°ì íì¬ ë¹ëì¤ ë°ì´í° êµ¬ê° ë° ë°ì´í° ìì¼ë°ë êµ¬ê° ë° ì ì´ êµ¬ê° ëì ìì ë ë°ì´í°ë¥¼ ëì¤íë ì´íë¤(1130 ê³¼ì ). Next, the display area is adjusted according to the extracted color gamut information to display data received during the video data section, the data island section, and the control section (step 1130).
본 ë°ëª ì ìì í ì¤ììì íì ëì§ ìì¼ë©°, 본 ë°ëª ì ì¬ìë´ìì ë¹ì ìì ìí ë³íì´ ê°ë¥í¨ì ë¬¼ë¡ ì´ë¤. The present invention is not limited to the above-described embodiment, and of course, modifications may be made by those skilled in the art within the spirit of the present invention.
ëí 본 ë°ëª ì ëí ì»´í¨í°ë¡ ì½ì ì ìë 기ë¡ë§¤ì²´ì ì»´í¨í°ê° ì½ì ì ìë ì ë³´ë¡ì 구ííë ê²ì´ ê°ë¥íë¤. ì»´í¨í°ê° ì½ì ì ìë 기ë¡ë§¤ì²´ë ì»´í¨í° ìì¤í ì ìíì¬ ì½íì§ ì ìë ë°ì´í°ê° ì ì¥ëë 모ë ì¢ ë¥ì 기ë¡ì¥ì¹ë¥¼ í¬í¨íë¤. ì»´í¨í°ê° ì½ì ì ìë 기ë¡ë§¤ì²´ì ìë¡ë ROM, RAM, CD-ROM, ì기 í ì´í, íëëì¤í¬, íë¡í¼ëì¤í¬, íëì¬ ë©ëª¨ë¦¬, ê´ ë°ì´í° ì ì¥ì¥ì¹ ë±ì´ ìì¼ë©°, ëí ìºë¦¬ì´ ì¨ì´ë¸(ì를 ë¤ì´ ì¸í°ë·ì íµí ì ì¡)ì ííë¡ êµ¬íëë ê²ë í¬í¨íë¤. ëí ì»´í¨í°ê° ì½ì ì ìë 기ë¡ë§¤ì²´ë ë¤í¸ìí¬ë¡ ì°ê²°ë ì»´í¨í° ìì¤í ì ë¶ì°ëì´, ë¶ì°ë°©ìì¼ë¡ ì»´í¨í°ê° ì½ì ì ìë ì ë³´ë¡ì ì ì¥ëê³ ì¤íë ì ìë¤.The present invention can also be embodied as computer readable information on a computer readable recording medium. The computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, hard disk, floppy disk, flash memory, optical data storage device, and also carrier waves (for example, transmission over the Internet). It also includes the implementation in the form of. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable information is stored and executed in a distributed fashion.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4