ãçºæã®è©³ç´°ãªèª¬æã ãçºæã®å©ç¨åéã æ¬çºæã¯ãä¼éãã¹ãæ
å ±ä¿¡å·ãæé軸æ¹åã«ãµã³ããª
ã³ã°éååãã¦ãã£ã¸ã¿ã«ä¿¡å·ã«å¤æãã¦ä¼éããè£
ç½®
ã«ä¿ããå¾
ã«ãã®ï¼æ¨æ¬å¤å½ãã®å¹³åã¨ï¼ãæ°ã³ä½æ¸ã
ã¦ç¬¦æåããè£
ç½®ã«é¢ããã[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a device that samples and quantizes an information signal to be transmitted in the time axis direction, converts it into a digital signal, and transmits the digital signal. This invention relates to an apparatus for reducing the average and number of 7 tons and converting it into a sign.
ä¼éä¿¡å·ã¨ãã¦ç»åä¿¡å·ããã£ã¸ã¿ã«ä¿¡å·ã«å¤æãã¦ä¼
éããè£
ç½®ã«ããã¦ããã®ï¼æ¨æ¬å¤ï¼ä»¥ä¸ãï½ãä¹ç»ç´
ã¨ç§°ãããï¼å½ãã®éååãããæ°ã¯ãç´ç·éååã®å ´
åã§é常ï¼ãï¼ããFãå¿é»ã¨ããã¦ããããã®ç´ç·é
ååã§ç»åä¿¡å·ããã®ã¾ãã£ã¸ã¿ã«åããã¨ããã®ãã£
ã¸ã¿ã«ä¿¡å·ã®ä¼éã¬ã¼ãã¯ãæ¨éãã¬ãæ¹å¼ã®å ´åã§ï¼
ï¼ï¼ï¼ï½ãï½ãï½ï¼ï½ï½
ï½ç¨åº¦ãå¿
è¦ã¨ãªããä¸é¨ã§æ
æ¡ãï½ã¦ããé«åä½ãã¬ãæ¹å¼ã«ããã£ã¦ã¯ãä¸è¨æ¨æº
æ¹å¼ã®ï¼å以ä¸ã®ä¼éã¬ã¼ããè«æ±ãå ããIn a device that converts an image signal into a digital signal and transmits it as a transmission signal, the number of quantization bits per sample value (hereinafter referred to as a pixel) is usually 7 to 8 in the case of linear quantization. Pitsu F is considered to be an electrocardiogram. When the image signal is directly digitized using this linear quantization, the transmission rate of the digital signal is 1 in the case of the standard television system.
00 Mbit/sec, and some high-definition television systems that have been proposed require a transmission rate that is more than twice that of the standard system.
ãã®ç»åä¿¡å·ããã£ã¸ã¿ã«ä¿¡å·ã§ç£æ°è¨é²åçããè£
ç½®
ï¼ä»¥ä¸ããããã£ã¸ã¿ã«ï¼¶ï¼´ï¼²ã¨ç§°ãããï¼ã§ã¯ãä¸è¿°
ã®å¦ãä¼éã¬ã¼ããèããé«ãããã徿¥ã®ã¢ããã°è¨
鲿¹å¼ï¼¶ï¼´ï¼²ã¨æ¯ã¹ã¦ããã¼ãã®è¨é²å¯åº¦ãå®è³ªä½ä¸ã
ã¦ãååãªé²ç»æéãå¾ããããã¾ãæ±ãä¿¡å·ãé常ã«
åºå¸¯åã¨ãªã£ã¦ããã£ã¸ã¿ã«ä¿¡å·å¦çåè·¯ã®åä½é度ã
åé¡ã¨ãªããæè¡çã«ãå°é£ãä¼´ãããã®ãã£ã¸ã¿ã«ï¼¶
ï¼´ï¼²ãå®¶åºç¨ã¨ãã¦ãªã©åºãæ®åãããããã®å¤§ããªé
害ã¨ãªã£ã¦ãããIn devices that magnetically record and reproduce image signals as digital signals (hereinafter referred to as digital VTRs), the transmission rate is extremely high as described above, so compared to conventional analog recording VTRs, tape recording density is substantially lower. As a result, sufficient recording time cannot be obtained, and the signals to be handled are extremely wide-band, which poses problems with the operating speed of the digital signal processing circuit and is technically difficult.
This is a major obstacle to the widespread use of TR for home use.
ããããéé ç¹ãæ¹åããããã«ãããããé«è½ç符å·
åã®æ¤è¨ã徿¥ããè¡ããã¦ããããã®ä¾ãæç®ï¼å¹æ
æ¬å½¦èï¼ç»åã®ãã£ã¸ã¿ã«ä¿¡å·å¦çï¼è¼åå·¥æ¥æ°è社ï¼
ã«è©³è¿°ããã¦ãããã®æç®ï¼ã®ç¬¬ï¼ç« ï¼ã¦ãè¨è¼ããã¦
ããããã«ãï¼æ¨æ¬å¤å½ãã®ãããæ°ã使¸ããæ¹æ³ã¨
ãã¦ããã§ã«ç¬¦å·åããç»ç´ ã®å¤ããç¾å¨ã®å¤ãäºæ¸¬ã
ãããã¨ã®èª¤å·®ã符å·åããããããäºæ¸¬ç¬¦å·åæ¹å¼ï¼
DPCï¼ï¼ãããç¥ããã¦ãããIn order to improve these points, so-called high-efficiency coding has been studied for a long time, and an example of this is in the literature (1-Image Digital Signal Processing by Takahiko Fukinuki, Usukan Kogyo Shimbunsha).
As detailed in this document (Chapter 9), one way to reduce the number of bits per sample is to predict the current value from the value of the pixel that has already been encoded. , the so-called predictive coding method (
DPCM) is well known.
ãã®äºæ¸¬ç¬¦å·åæ¹å¼ã«ãå ã°ãï¼ç»ç´ å½ãã®ãããæ°ã
ï¼ãï¼ãããç¨åº¦ã«ä½æ¸å¯è½ã§ãåè¨ããç´ç·éååæ¹
å¼ã¨æ¯ã¹ã¦ãããæ°ãç´ï¼ï¼ï¼ã«ä½æ¸ãããã¨ãå¯è½ã§
ãããAccording to this predictive coding method, the number of bits per pixel can be reduced to about 4 to 5 bits, which is about 1/2 compared to the linear quantization method described above. be.
ãããããã®äºæ¸¬ç¬¦å·åæ¹å¼ã¯ãä¸è¨æç®ã«ãè¿°ã¹ãã
ã¦ããããã«ãäºæ¸¬ç¬¦å·åã«ããçããéååéé³ãç´¯
ç©ããä¼éç³»ã§çãã符å·èª¤ãã«ãããã®å½±é¿ã次ã
ã¨
伿ï¼ããããã¨ã©ã¼ä¼æï¼ãããªã©ã®æ¬è³ªçãªåé¡ã
ãããã¾ããäºæ¸¬ç¬¦å·åã«ãã£ã¼ãããã¯å½¢å¼ãä¸è¬ï½
æ¡ããããããç«¥ååéé³ããã£ã¼ãããã¯ããã¦æ¬¡ã®
ç»ç´ ã«å½±é¿ãä¸ãããããããã¯ãªã¼ã¯è¼ªéãã¿ã³ã¨ç§°
ãå ãæ¯åæ§ã®éé³ãçºçããããå¾é
éè² è·ãã¨ãã¸
ãã¸ãã¹ãªã©ãçºçãã¦ãç»å輪éé¨ã®ã¼ãããããã
çºçãããªã©ãç»è³ªãèããå£åãããåé¡ããã£ã¦ã
ç¹ã«é«ç»è³ªã®è¦æ±ãããæ©å¨ãè£
ç½®ã§ã¯ããã®äºæ¸¬ç¬¦å·
åæ¹å¼ã®å®ç¨åã¯å°é£ã§ãã£ããHowever, in this predictive coding method, as mentioned in the above literature, quantization noise caused by predictive coding accumulates, and its influence propagates one after another due to code errors occurring in the transmission system (so-called error propagation). There are fundamental problems such as
As a result, the doji noise may be fed back and affect the next pixel, or a vibratory noise called leak contour slam may occur, gradient overload, edge business, etc. may occur, causing the image to deteriorate. There are problems that significantly degrade the image quality, such as blurring and fluctuations in the outline.
It has been difficult to put this predictive coding method into practical use, especially in devices and devices that require high image quality.
æ¬çºæã¯ä¸è¨ã«éã¿ã徿¥æè¡ã®æ¬ ç¹ããªããã符å·å
ã«ä¼´ãªãä¿¡å·å£åãæå°éã«æãã¦ï¼æ¨æ¬å¤å½ãã®å¹³å
ãããæ°ã使¸ã§ãã符å·åè£
ç½®ãæä¾ãããã¨ã«ãã
ãIn view of the above, it is an object of the present invention to provide an encoding device that eliminates the drawbacks of the prior art, minimizes signal deterioration associated with encoding, and reduces the average number of bits per sample value.
æ¬çºæã¯ä¸è¨ã®ç®çãéæããããã«ãä¼éãã¹ãæ
å ±
ä¿¡å·ã®ã¸åï¼ï¼®ã¯ï¼ä»¥ä¸ã®æ´çï¼ã®æ¨æ¬å¤ã®ãã¡ãåºæº
ã¨ãªãå°ãªãã¨ãï¼ã¤ã®æ¨æ¬å¤ããã®éåå誤差ãç¡è¦
ã§ããç¨åº¦ã«ååãªéååã©ï¼ï¼æ°ï½ã§ç¬¦å·åããä»ã®
æ®ãã®æ¨æ¬å¤ã¯ä¸è¨åºæºæ¨æ¬å¤ã«é¢é£ããå·®åã«åºã¥ã
ä¸è¨å¤ï½ããå°ããªéååããããæ°ï½ãï¼ï½ãï¼ï½ï¼
ã§ç¬¦å·åãããã¨ã«ããããã®å·®å符å·åã«åºã¥ãéå
åéé³ã®ç´¯ç©ãçããªãããã«ãã符å·èª¤ãã«ããã¨ã©
ã¼ä¼æ¬ãé·æéã«æ¸¡ããªãããã«ãã¦ãï¼æ¨æ¨å¤å½ãã®
å¹³åãããæ°ï¼ä½æ¸ãããï¼ã«ãããã¨ï¼ç¹å¾´ã¨ããã
ã®ã§ãããIn order to achieve the above object, the present invention sets at least one reference sample value among the sample values (N is 2 or more) of the information signal to be transmitted, and its quantization error is ignored. 7) Encode the remaining sample values with a number n of quantization bits smaller than the above value n based on the difference related to the reference sample value.
By encoding with , the accumulation of quantization noise based on the differential encoding is prevented, and error propagation due to code errors is prevented over a long period of time, and the average number of bits per one block value is It has seven characteristics:
ããã«æ¬çºæã«ããã¦ã¯ãä¸è¨ç¬¦å·å¨ããã£ã¼ããã©ã¯
ã¼ãå½¢å¼ã§æ§æãããã¨ã«ãããåè¨ãã徿¥ã®ãã£ã¼
ãããã¯å½¢å¼ã§åé¡ã¨ãªã¤ãéé³çºçããªãããä¼éã
ã¹ãæ
å ±ä¿¡å·ã®å£åãçãé£ãããããã®ã§ãããFurthermore, in the present invention, by configuring the encoder in a feedforward format, the generation of noise, which is a problem with the conventional feedback format described above, is eliminated, and the deterioration of the information signal to be transmitted is made less likely to occur.
以䏿¬çºæã宿½ä¾ã«ãã詳細ï½èª¬æããã The present invention will be explained in detail below using examples.
é§ï¼å³ã¯ãæ¬çºæãï¼¶ï¼´ï¼²ãªã©ã®ç£æ°è¨é²åçè£
ç½®ã«é©
ç¨ããå ´åã®ä¸å®æ½ä¾ã示ãå³ã第ï¼å³ã¯æ¬çºæã«ä¿ã
ã符å·å¨ï¼ï¼ã®ä¸å®æ½ä¾ã示ãå³ãé§ï¼å³ã¯ãã®åä½èª¬
æç¨ã®æ³¢å½¢å³ã示ï¼å³ã¯ãã®ç¬¦å·ç¹æ§ã®ä¸å®æ½ä¾ã示ã
å³ã§ãããFigure 1 shows an embodiment of the present invention applied to a magnetic recording/reproducing device such as a VTR, Figure 2 shows an embodiment of the encoder 20 according to the invention, and Figure 3 shows an embodiment of the encoder 20 according to the present invention. FIG. 4, a waveform diagram for explaining its operation, is a diagram showing an example of its sign characteristic.
ç°ï¼å³ã«ããã¦ãï¼ã¯è¨é²ãã¹ãç»åä¿¡å·ã®å
¥å端åã
ï¼ï¼ã¯ï¼¡ï¼ï¼¤å¤æå¨ãï¼ï¼ã¯ç¬¦å·å¨ãï¼ï¼ï¼âï¼ãï¼°ï¼£
ï¼ããã»ããµãï¼ï¼ã¯ã¡ã¢ãªãï¼ï¼ã¯å¤èª¿å¨ãï¼ï¼ã¯è¨
é²å¢å¹
å¨ãï¼ï¼ã¯åçã¤ã³ã©ã¤ã¶ãï¼ï¼ã¯å¾©èª¿å¨ãï¼ï¼
ã¯å¾©å·å¨ãï¼ï¼ï¼ã¯ï¼¤ï¼ï¼¡å¤æå¨ãï¼ã¯åçãããç»å
ä¿¡å·ã®åºå端åãï¼ã¯ç£æ°ããããï¼ã¯ç£æ°ãã¼ãã§ã
ããIn the diagram 1, 1 is the input terminal of the image signal to be recorded,
10 is an A/D converter, 20 is an encoder, 30&-! , PC
M processor, 40 memory, 50 modulator, 60 recording amplifier, 70 reproduction equalizer, 80 demodulator, 90
1 is a decoder, 100 is a D/A converter, 2 is an output terminal for a reproduced image signal, 3 is a magnetic head, and 4 is a magnetic tape.
端åï¼ããã®ç»åä¿¡å·â ã¯ï¼¡ï¼ï¼¤å¤æå¨ï¼ï¼ã«ãããé
ååãããæ°ï½ãããã§ãã£ã¸ã¿ã«ä¿¡å·ï½ãIï½å¤æã
ããããã®ï½ãããã®ãã£ã¸ã¿ã«ä¿¡å·ï½ã¯ãæ¬çºæã«ä¿
ã符å·å¨ï¼ï¼ï¼½ã«ãã£ã¦ãå¾è¿°ããããã«é©å®ãããå§
縮ãå ãããã®ç¬¦å·å¨ï¼ï¼ã®åºåï½ãï¼ä»¥ä¸ããä¹ãã¼
ã¿ï½ã¨ç¥è¨ãããï¼ã¯ãï¼°ï¼£ï¼ããã»ããµï¼ï¼ãâï½ï¼
ãä»ãã¦ãã¡ã¢ãªï¼ï¼ã«é次æ¸è¾¼ã¾å ããã¡ã¢ãªï¼ï¼ã¸
ã®æ¸è¾¼ã¿ã®ã¨ãã«ã»ãã¼ã¿ï½ã®æå®ã®ãããæ°ãããªã
ãããã¯ãã¨ã«ããã®ã¢ãã¬ã¹ã示ãã¢ãã¬ã¹ç¬¦å·ã¨ç¬¦
å·è¨æ£ã®ããã®ãããããï¼ï¼ãã£ç¬¦å·ã追å ããã¦ã¡
ã¢ãªï¼ï¼ã¸é次æ¸è¾¼ã¾ãããThe image signal (2) from the terminal 1 is converted into a digital signal aIc by the A/D converter 10 with n bits of quantization bits. This n-bit digital signal a is appropriately bit-compressed by the encoder 21 according to the present invention as described later. The output f (hereinafter abbreviated as data f) of this encoder 20 is output by the PCM processor 30'r:
After writing to the memory 40, an address code indicating the address and a so-called bar 1 for code correction are written for each block of data f consisting of a predetermined number of bits. The T code is added and sequentially written into the memory 40.
ã¡ã¢ãªï¼ï¼ã¸ã®æ¸è¾¼ã¿çµäºå¾ãå¼ç¶ãã¦èªåãå èªåã
å ããã¼ã¿ï½åã³ã¢ãã¬ã¹ç¬¦å·ã¨ãããªãã¤ç¬¦å·ã¯ãï¼°
ï¼£ï¼ããã»ããµï¼ï¼ã«ã¦ã並åãã¼ã¿ããç´åãã¼ã¿ã«
夿ãããã¨ã¨ãã«ãããã¯ã®é åºãã®ããã®åæç¬¦å·
ããã¾ãå¿
è¦ã«å¿ãã¦ç¬¦å·èª¤ãæ¤åºã®ããã®èª¤ãæ¤åºç¬¦
å·ãããããã¯ããããã¼ã¿åã®åå¾ã«é©å®èª¿æ©ç¬¦å·ãª
ã©ã追å ãï½ã¦åºåããããAfter the writing to the memory 40 is completed, the read data f, address code, and accuracy code are read as P.
In the CM processor 30, the parallel data is converted to serial data, and a synchronization code for locating the beginning of the block is also added, as necessary, an error detection code for code error detection, or before and after these data strings. A start-stop code and the like are added as appropriate and output.
ãã®ï¼°ï¼£ï¼ããã»ããµï¼ï¼ããã®åºåãã¼ã¿åï½ã¯ãå¤
調å¨ï¼ï¼ã«ãã£ã¦ãç£æ°è¨é²ã«é©ãã符å·ã«å¤èª¿ãå ã¦
ã®ã¡ããã®åºåã¯è¨é²å¢å¹
å¨ï¼ï¼ãä»ãã¦ç£æ°ãããï¼
ã«ãã鿬¡ç£æ°ãã¼ãï¼ï¼ã«è¨é²ããããThe output data string g of this PCM processor 30 is modulated by a modulator 50 into a code suitable for magnetic recording, and then the output is sent to the magnetic head 3 via a recording amplifier 60.
The data are sequentially recorded on the magnetic tape 44 by the following steps.
次ã«åç糸ã«ããã¦ãç£æ°ãã¼ãï¼ããç£æ°ãããï¼ã«
ããåçãå ãä¿¡å·ã¯ãåçã¤ã³ã©ã¤ã¶ï¼ï¼ã§é©å®åç
çåãï½ãã¦ã®ã¡å¾©èª¿å¨ï¼ï¼ã§å¾©èª¿ãï½ã¦ãä¸è¨å¤èª¿å¨
ï¼ï¼ã«å
¥åãï½ãããã¼ã¿åï½ã¨åæ§ã®ä¿¡å·ï½â²ãåºå
ãå ãããã®å¾©èª¿å¨ï¼ï¼ããã®åºåãã¼ã¿åï½â²ã¯ãï¼°
ï¼£ï¼ããã»ããµï¼ï¼ï½ã¦ããã®ãããã¯ãã¨ã«åæç¬¦å·
ã«åºã¥ããã¼ã¿ã®é åºãããåè¨èª¤ãæ¤åºç¬¦å·ã«åºã¥ã
符å·èª¤ãæ¤åºãªã©ãè¡ããã¦ã®ã¡ãç´åãã¼ã¿ãã並å
ãã¼ã¿ã«å¤æããã¦ããã¡ã¢ãªï¼ï¼ï½ï¼£é次æ¸è¾¼â²ï½ã
å ããNext, in the reproduction thread, the signal reproduced from the magnetic tape 4 by the magnetic head 3 is appropriately reproduced and equalized by a reproduction equalizer 70, demodulated by a demodulator 80, and inputted to the modulator 50. The output data string g' from the demodulator 80 is P
The CM processor 30f performs data cueing based on the synchronization code for each block, code error detection based on the error detection code, and then converts serial data into parallel data before sequential writing to the memory 40iC. Including 'f,
Reduce.
ã¡ã¢ãªï¼ï¼ã«æ¸è¾¼ã¾ãããã¼ã¿ã¯ãï¼°ï¼£ï¼ããã»ããµï¼
ï¼ãKããä¸è¨ããªãã£ç¬¦å·ã«åºã¥ãã¦é次符å·è¨æ£ã
ãã¦ãããåé·ã®ç¬¦å·ã¯é次é¤å»ãããä¸è¨ç¬¦å·å¨ï¼ï¼
ããã®åºåãã¼ã¿ï½ã¨åæ§ã®ãã¼ã¿ï½ãåºåããã¦å¾©å·
å¨ï¼ï¼ã«ä¾çµ¦ãå ã復å·å¨ï¼ï¼ã«ã¦å¾©å·ããã¦ï½ããã
ã®ãã£ã¸ã¿ã«ä¿¡å·ï½â²ãåºåãï½ï½ããã®ãã£ã¸ã¿ã«ä¿¡
å·ï½â²ã¯ï¼¤ï¼ï¼¡å¤æå¨ï¼ï¼ï¼ã«ã¦ã¢ããã°ä¿¡å·ã«å¤æã
ãã¦å
ã®ç»åä¿¡å·ã
ã復å
ãï½ãã¦ç«¯åï¼ã«åºåãå ã
ãThe data written to the memory 40 is transferred to the PCM processor 3
After the code is successively corrected based on the parity code from 0K, redundant codes are successively removed, and the encoder 20
Data l similar to the output data f from D is outputted and supplied to the decoder 90. It is decoded by the reduced decoder 90 and an n-bit digital signal f' is output rl, and this digital signal f' is The A converter 100 converts it into an analog signal, restores the original image signal, and outputs it to the terminal 2.
次ã«ãæ¬çºæã«ä¿ã符å·å¨ï¼ï¼ã®åä½ã第ï¼å³ã«ç¤ºãä¸
宿½ä¾ã«ãã第ï¼å³ã®æ³¢å½¢å³ãç¨ãã¦èª¬æãããNext, the operation of the encoder 20 according to the present invention will be explained using an embodiment shown in FIG. 2 and a waveform diagram in FIG. 3.
第ï¼å³ã«ããã¦ãï¼ï¼ï¼ã¯ä¸è¨ï¼¡ï¼ï¼¤å¤æå¨ï¼ï¼ããåº
åãããï½ãããã®ãã£ã¸ã¿ã«ä¿¡å·ï½ã®å
¥å端åã§ãã
ã第ï¼å³ã®ï¼ï¼ï¼ã«ç¤ºãããã«ãAï¼ï¼¤å¤æå¨ï¼ï¼ã§ç«¯
åï¼ããå
¥åãï½ãç»åä¿¡å·ï¼¶ããµã³ããªã³ã°å¨æÏã
ã¨ã«é次ãµã³ããªã³ã°ããã忍æ¬å¤ã®ã¬ãã«ã«å¿ãã¦
ï½ãããã®ãã£ã¸ã¿ã«ä¿¡å·ï¼¡ï½ï¼ï½ã¯æ´æ°ï¼ã«éæ¬¡é¢æ
ããã¦åºåããããIn FIG. 2, 201 is an input terminal for an n-bit digital signal a output from the A/D converter 10. As shown in FIG. 3 (1), the A/D converter 10 sequentially samples n image signals V input from terminal 1 at every sampling period Ï, and converts n bits according to the level of each sample value. It is successively converted into a digital signal Ai (i is an integer) and output.
ããã§ãä¸è¨éååãã¢ï¼æ°ï½ã¯ããã®éåå誤差ãç¡
è¦ã§ããç¨åº¦ã®å¤§ããªå¤ã§ãããç»åä¿¡å·ãåãæ±ãæ¬
宿½ä¾ã§ã¯ãä¾ãã°ï½ï½ï¼ã¨å®ãããããHere, the number n of quantized vias is such a large value that the quantization error is negligible, and is set to, for example, nm8 in this embodiment, which deals with image signals.
ï¼ï¼çºæã¯ãï¼®åï¼ï¼®ã¯ï¼ä»¥ä¸ã®æ´æ°ï¼ã®æ¨æ¬å¤ã®ãã¡
ãåºæºã¨ãªãå°ãªãã¨ãï¼ã¤ã®æ¨æ¬å¤ããã®éåå誤差
ãç¡è¦ã§ããç¨åº¦ã«ååãªãããæ°ï½ã§ç¬¦å·åããä»ã®
æ®ãã®æ¨æ¬å¤ã¯ä¸è¨åºæºæ¨æ¬å¤ã«é¢é£ããå·®åã«åºã¥ã
ä¸è¨å¤ï¼ï¼ããå°ããªãããï½ï½ã§ç¬¦å·åãããã¨å§ã
ããï¼æ¨æ¬å¤å½ãã®å¹³åãããæ°ã使¸ããããã«ãã
ãã¨ãç¹å¾´ã¨ãããã®ã§ããã$: The invention encodes at least one reference sample value out of N sample values (N is an integer of 2 or more) with a sufficient number of bits n so that its quantization error can be ignored, and encodes other sample values. The remaining sample values are encoded with bits am smaller than the value 11 based on the difference related to the reference sample value, thereby reducing the average number of bits per sample value. It is.
ãã®çï¼å³åã³ç°ï¼å³ã¯ï¼®âï¼ã¨ããå ´åã®ä¸å®æ½ä¾ã
示ããã®ã§ãããå³ã¡ã第ï¼å³ã®ï¼ï¼ï¼ã«ç¤ºãããã«ï¼
Aï½ï½âï¼ããAï¼ï½ããAï¼ï½ï¼ï¼ãï¼ã§ä»£è¡¨ããã
ï¼ã¤ã®æ¨æ¬å¤ã®ãã¡ãOå°ã§ç¤ºãæ¨æ¬å¤ï¼¡å¼ã¯åºæºæ¨æ¬
å¤ã¨ãã¦ï½ãããã§ç¬¦å·åããã以ä¸ãã®åºæºãã¼ã¿ã
åãè¨å·ï¼¡ï½ï½ã¨ãã¦è¡¨ãããThese figures 2 and 5 show an example in the case of N-3. That is, as shown in (1) in Figure 3, (
Among the three sample values represented by (Axi-+, A5i, A5i++), the sample value A (marked with O) is encoded with n bits as a reference sample value. Hereinafter, this reference data will be represented by the same symbol Asi.
ä»ã®æ®ãã®ï¼¸å°ã§ç¤ºãï¼ã¤ã®æ¨æ¬å¤ï¼¡ï½ï½âï½ããThe other remaining two sample values Axi-t are indicated by X marks.
ã³ï¼ï¼ï¼ã«ã¤ãã¦ã¯ãä¸è¨åºæºæ¨æ¬å¤ï¼¡ï½ï½ã¨ã®å·®åã«
å¿ããæ¬¡å¼ã§ä¸ããããï¼ã¤ã®å·®åãã¼ã¿ï¼¢ï½ï½âï¼ã¨
ï¼¢ï½ï½ï¼ï¼ããããæ°ï½ï¼ï¼ï½ï¼ã§ç¬¦å·åãããâä¾ã¨
ãã¦ãHâï¼ï¼ï½ï¼ï¼ã¨ãï½ããåºæºãã¼ã¿ï¼¡ï¼ï½ã¯ï¼
ãï¼ããå·®åãã¼ã¿ï¼¢ï½ï¼âï¼ã¨ï¼¢ï¼ï½ï¼ï¼ãã¯å
±ã«ï¼
ãâï¼ï¼ã§ç¬¦å·åãããå¾ã£ã¦ï¼æ¨æ¬å¤å½ãã®å¹³åãã
ãæ°ã¯ï¼ï¼ï¼ï¼âï¼ï¼ï¼ï¼ãããã¨ãªããå
¨ã¦ã®æ¨æ¬å¤
æï¼ãããã§ç¬¦å·åãã徿¥æ¹å¼ã¨æ¯ã¹ã¦ï¼ï¼ï¼ã«ãã
ãå§ç¸®ãããã¨ãå¯è½ã¨ãªããFor sample 1+1, two difference data Bxi-+ and Bsi++ given by the following equation according to the difference from the reference sample value Asi are encoded using the number of bits m (<n). - As an example, H-8, m=4 and n, the standard data A3i is 8
Bit 7, differential data Bs1-+ and B5i+1 are both 4
Therefore, the average number of bits per sample value is 16/3-5.35 bits, which is a bit compression of 215 compared to the conventional method in which all sample values are encoded using 8 bits. becomes possible.
以ä¸ã®åçã«ãã¨ã¥ããããå§ç¸®ã¯æ¬¡ã®ããã«ãã¦è¡ã
ãããç°ï¼å³ã«ããã¦ã端åï¼ï¼ï¼ããå
¥åãå ãï½ã
ããã®ãã£ã¸ã¿ã«ä¿¡å·ï½ãï¼ç¬¬ï¼å³ï¼ï¼ï¼ã®ï½ï¼ã¯ãåº
æºãã¼ã¿æåãå¨ï¼ï¼ï¼ã«ä¾çµ¦ããã䏿¹ãé
å»¶å¨ï¼ï¼
ï¼ã«ã¦ãµã³ããªã³ã°å¨æÏã«ç¸å½ããæéé
å»¶ãããã
ã®åºåï½ãï¼£ï¼ï¼ï¼å³ï¼ï¼ï¼ã®ï½ï¼ã¯æ¸ç®å¨ï¼ï¼ï¼ã®ä¸
æ¹ã«å
¥åããããBit compression based on the above principle is performed as follows. In Figure 2, the n-bit digital signal a (a in Figure 3 (2)) input from the terminal 201 is supplied to the reference data extractor 230, while the delay unit 21
0, the output b) of FIG. 2 is input to one side of the subtracter 240.
åºæºãã¼ã¿æåãå¨ï¼ï¼ï¼ï½ã§ãä¸è¨ä¿¡å·ï½ããåºæºæ¨
æ¬å¤ï¼ï¼¡ï¼â¡ï¼ãæåããããã¤ï¼Ïã®æéãã®åºæºæ¨
æ¬å¤ããã¼ã«ãããã¦åºåããããThe reference data sampler 230f extracts a reference sample value (A3â¡) from the signal a, holds the reference sample value for a period of 3Ï, and outputs it.
ãã®åºæºãã¼ã¿æåãå¨ï¼ï¼ï¼ããã®åºåï¼£ï¼ç¬¬ï¼å³ï¼
ï¼ï¼ã®ï¼£ï¼ã¯ãæ¸ç®å¨ï¼ï¼ï¼ã®ä»æ¹ã«å
¥åãããã¨å
±ã«
ãã¼ã¿ã»ã¬ã¯ã¿ï¼ï¼ï¼ã®ç«¯åï¼¹ï¼ã«ä¾çµ¦ãï½ããOutput C from this reference data extractor 250 (Fig. 3 (
C) of 2) is input to the other side of the subtracter 240 and is also supplied to the terminal Y2 of the data selector 260.
以ä¸ã®ååºåï½ãï½ãï¼£ã¯ããï½ãï½ãããã®ä¿¡å·ã§ã
ããæ¸ç®å¨ï¼ï¼ï¼ã«ã¦ä¸è¨åºåï¼£ã¨ï½ã®å·®åæ¼ç®ãè¡ã
ãã¦ä¸¡è
ã®å·®åã«å¿ããï½ãããã®åºåï½ï¼ç°ï¼å³ï¼ï¼
ï¼ã®ï½ï¼ãå¾ãå ããå
·ä½çã«ã¯ãï¼ã¤ã®æ¨æ¬å¤ï¼ï¼¡ï½
ï½âï¼âAï¼ï¼ãâAï¼ï½ï¼ï¼ãï¼ã«å¯¾ããåè¨ï¼ï¼ï¼
å¼ã§ç¤ºããï¼ã¤ã®å·®åãã¼ã¿ï¼¢ãï½ï½âï¼ã¨ï¼¢ï½ï½ï¼ï¼
ãæ¸ç®å¨ï¼ï¼ï¼ããåºåï½ã¨ãã¦ãï¼ å¹åºåããããã
ã®åºåï½ã¯èªåãå°ç¨ã¡ã¢ï¼©ï¼ªï¼²ï¼¯ï¼ï¼ï¼ï¼ã®ã¢ãã¬ã¹
ä¿¡å·ã¨ãã¦ä¾çµ¦ãåºãï¼ãROï¼ï¼ï¼ï¼ã¯æ¸ç®å¨ï¼ï¼ï¼
ããã®ï½ãããã®åºåï½ãï½ï¼ï¼ï½ï¼ãããã«å¤æãã
æ§ç¸ãæãããEach of the above outputs a, b, and C is an n-bit signal. A subtracter 240 performs a difference calculation between the outputs C and b, and an n-bit output d (Fig. 3 (2)
) d) is also beneficial. Specifically, five sample values (Ax
i-1-A3! -A5i++), the above (1)
Two differential data B xiâ+ and Bxi+1 shown in the formula
is output from the subtracter 240 as an output d. This output d is supplied as an address signal for the read-only memory IJROM 250.
It has the aspect of converting the n-bit output d from into m((n) bits).
ï½âï¼ï¼ï½âï¼ã®å ´åã«ã¤ãã¦ï¼²ï¼¯ï¼ãï¼ï¼ï¼ãï¼»ãã
ãå¤æç¹æ§ã®ä¸ä¾ã第ï¼å³ã«ç¤ºããFIG. 4 shows an example of the conversion characteristics in the ROM 250 for the cases of n-8 and m-4.
ROï¼ï¼ï¼ï¼ã«ã¯ã第ï¼å³ã«ç¤ºãï¼ï¼ï¼ãï½ï½ãããâ
âããThe ROM 250 has 1 (1, al, â shown in FIG. 4).
'.
ï½ãã¨ãããï½ï½ã»ã»ãï½ãã«å¯¾å¿ããå
¨é¨ã§ï¼ï¼ï¼å³
ã¡ï¼ãããç¸å½ï¼ã®ãã¼ã¿ãæ¸è¾¼ã¾ãã¦ããããããã
ã¼ã¿ã¯æ¸ç®å¨ï¼ï¼ï¼¤ããã®ï½ãï¼ï¼ï¼ï¼ãããã®åºåï½
ã«å¿ãã¦ã¢ãã¬ã¹æå®ãï½ã¦èªåããããæ´ã«å
·ä½çã«
ã¯ãæ¸ç®å¨ï¼ï¼ï¼ããã®åºåï½ã®å¤ãæ£ï¼å³ã¡ï¼¡ï¼ï½â§
Aï¼ãï¼ãããã¯ï¼¡ï¼ï½â§ï¼¡ï¼ï½ï¼ï¼ï¼ã®ã¨ãã¯è¨å·ï½
ã«å¯¾å¿ãããã¼ã¿ãèªåãããã¾ãï½Ïãå¤ãè² ï¼å³ã¡
Aï¼ï½â¦ï¼¡ï½ãï½âï¼ãããã¯ï¼¡ï¼ï½â¦ï¼¡ï¼ï½ï¼ï¼ï¼ã®
ã¨ãã¯è¨å·ãã«å¯¾å¿ãããã¼ã¿ãèªåãããããã®âä¾
ã¨ãã¦ã第ï¼å³ã«ç¤ºãããã«ãï½ã®å¤ï¼å³ã¡å·®åãã¼ã¿
ï¼¢ï½ï¼¯å¤ï¼ãï¼ï¼ã®ã¨ãã¯ï½ãã«å¯¾å¿ãããã¼ã¿ï½ï½ã
ROï¼ï¼ï¼ï¼ããåºåããããa. , bl..., b, a total of 16 (that is, equivalent to 4 bits) data are written, and these data are n (=8) bits output d from the subtracter 24D.
is addressed and read accordingly. More specifically, the value of the output d from the subtracter 240 is positive (i.e., A3iâ§
If A3to1 or A5iâ§A5i++), symbol a
When the value of dÏ is negative (that is, A3iâ¦As i-1 or A3iâ¦A3i++), data corresponding to the symbol is read. As an example, as shown in FIG. 4, the ROM 250 outputs data cl corresponding to a, where the value of d (ie, the difference data BiO value) is 54.
ãããã¦ï¼ï¼ï¼ï¼ï¼ï¼ï¼ã«ã¦ãæ¸ç®å¨ï¼ï¼ï¼ããã®ï½ï¼
ï¼ï¼ï¼ãããã®åºåï½ã¯ï½ï¼âï¼ï¼ï¼ãããã«å¤æãã
ããé¨ã¡åè¨ï¼ï¼ï¼å¼ã®ï½ãããã®ãã¼ã¿ï¼¢ãï¼ãï½â
ï¼ã¯ï½ãããã®ç¬¦å·ï¼£ï½ï¼âï¼ãKãâï½ãï½ãããã®
ãã¼ã¿ï¼¢ãï¼ï½ï¼ï¼ã¯ï½ãããã®ç¬¦å·ï¼£ï½ï½ï¼ï¼ã«ãï½
ããï½å¤æãï½ããã®åºåï½
ãï¼ç¬¬ï¼å³ï¼ï¼ï¼ã®ï½
ï¼ã¯
ãã¼ã¿ã»ã¬ã¯ã¿ï¼ï¼ï¼»ãã®ç«¯åï¼¹ï¼ã«ä¾çµ¦ããããThus 1(0M250, subtractor 240 and n(
=8) bit output d is converted to m(-+4) bits. The n-bit data B 3 râ of equation (1) above
+ is m-bit code Cx1-+ K -t and n-bit data B 3i++ is m-bit code Csi+1
, and the output e (e in FIG. 3(2)) is supplied to the terminal Y1 of the data selector 26[].
ãã¼ã¿ã»ã¬ã¯ã¿ï¼ï¼ï¼ã«ã¦ãROï¼ï¼ï¼ï¼ããã®åºåï½
ã¨åºæºãã¼ã¿æåãå¨ï¼ï¼ï¼ããã®åºåï¼£ï¼ï¼ï¼ï¼äº¤äº
ï¼«ï½æãããROï¼ï¼ï¼ï¼ããã®åºåï½
ããï½ãããã®
ãã¼ã¿ï¼£ï¼ï½âï¼ã¨ï¼£ï¼ï½ï¼ï¼ã鏿åºåãããã¾ãåº
æºãã¼ã¿æåãå¨ï¼ï¼ï¼ããã®åºåï¼£ããï½ãããã®åº
æºãã¼ã¿ï¼¡ï¼ï½ã鏿åºåããããAt the data selector 260, the ROM250 output e
and the output C711) of the reference data extractor 230 are selected alternately, m-bit data C5r-1 and C3i++ are selected and output from the output e from the ROM 250, and n-bit data C5r-1 and C3i++ are selected and output from the output e from the reference data extractor 230. Reference data A5i is selectively output.
å¾ãã¦ããã®ãã¼ã¿ã»ã¬ã¯ã¿ï¼ï¼ï¼ããã®åºåï½ãï¼ç¬¬
ï¼å³ï¼ï¼ï¼ã®ï½ï¼ã¯ãï¼ãï½ãï¼ï½âï¼ããAã¸ï¼ãï¼
ãï¼âï¼ï¼ï¼ï¼ãï¼ã®é ã§åãã¼ã¿ã®ãããæ°ã¯ï¼ãã
ããï¼ï½ãï½ãFollow. Therefore, the output f from this data selector 260 (f in FIG. 3 (2)) is < c 5i-+ , 1 +
The number of bits of each data increases in the order of (-5+++),
Each (m, n.
ï½ï¼ã«å¯¾å¿ãã符å·ã¨ãã¦è¡¨ç¾ãããã¨ãã§ãããCan it be expressed as a code corresponding to m)?
以ä¸ä»ã®æ¨æ¬å¤ãåæ§ã«ãã¦ãï¼ã¤ã®æ¨æ¬å¤ãã¨ã«é次
ãããæ°ï¼ï½ãï½ãï½ï¼ã®ç¬¦å·ã¨ãã¦ãããå§ç¸®ããã¦
è¡ããThereafter, the other sample values are bit-compressed in the same manner as codes of the number of bits (m, n, m) for each three sample values.
ãããã¦ç±ï¼å³ã«ç¤ºãã符å·å¨ï¼ï¼ã«ã¦ãããå§ç¸®ãã¦
å¾ãåºåï½ã¯ç«¯åï¼ï¼ï¼ãããåè¨çï¼å³ã®ï¼°ï¼£ï¼ãã
ã»ã³ãµï¼ï¼ãä»ãã¦ãã¡ã¢ãªï¼ï¼ã«é次æ¸è¾¼ã¾ãããï¼
æ¬çºæã«ããã¦ã¯äºãã«ãããï¼
ã®ç°ãªãï¼ç¨®é¡ã®ãã¼
ã¿ï¼ï¼ããããã¼ã¿ï¼£ï½ï¼âï¼ï¼ãï¼£ï¼ï½ï¼ãï¼ã¨ï¼ã
ãããã¼ã¿ï¼¡ï½ï½ï¼ãã¡ã¢ãªï¼ï¼ã«å¹çè¯ãæ ¼ç´ã§ãã
ææ®µãæä¾ãããã®ã§ãããIn this way, the output f obtained by bit compression in the encoder 20 shown in Figure 2 is sequentially written into the memory 40 from the terminal 202 via the PCM processor 30 shown in Figure 1.
The present invention provides means for efficiently storing two types of data (4-bit data Cx1-1#C3i+1 and 8-bit data Axi) having different bit percentages in the memory 40.
å³ã¡ãï¼ã¯ã¼ããªï½ï¼âï¼ï¼ãããã¨ããã¡ã¢ãªï¼ï¼ã
ã¯ã¼ãåä½ã§æ ¼ç´ããæ§æã¨ããï½ãï¼âï¼ï¼ãããã
ã¼ã¿ï¼¡ï¼ï¼ï¼¶ï½ã¤ãã¦ã¯ãã®ã¾ã¾ã¯ã¼ãåä½ã§æ¸è¾¼ã¿ã
ï½ï¼âï½ï¼ï¼ãããããã¼ã¿ã«ã¤ãã¦ã¯æåã®ãã¼ã¿ï¼£
ï¼ï½âï¼ï¼¹ï½ã¯ã¼ãããï¼ï¼ãã®ååï¼ä¾ãã°ä¸ä½ï½ã
ããï¼ã«æ¸è¾¼ã¿ããå ã«å¼ç¶ã次ã®ãã¼ã¿ï¼£ï¼ï¼ï¼ï¼ã¯
ãã®ã¯ã¼ãã®æ®ãã®ååï¼ä¾ãã°ä¸ä½ï½ãããï¼ã«æ¸è¾¼
ããThat is, one word is n (-8) bits, and the memory 40 is configured to store in word units, and the n (-8) bit data A31Vc is written as is in word units.
m(-z4) For bit data, first data C
3i-+Yj word, P) 5 is written to half (for example, the upper m bits), and following this process, the next data CM++1 is written to the remaining half of the word (for example, the lower m bits).
ãããããã¨ã«ãããã¡ã¢ãªï¼ï¼ã«ã¯ç¡é§ãªã¹ãã¼ã¹ã
çãããããã¨ãªãå¯ã«æ¸è¾¼ããã¨ãã§ãã¡ã¢ãªå®¹éã
使¸ã§ããã°ããã§ãªãã»è¨é²åã³åçã®ä¸¡æ¹ã§ãã¼ã¿
ããã¹ã¦ä¸å®ã®ã¯ã¼ãåä½ã§å¦çãããã¨ãã§ãããã¨
ããï¼°ï¼£ï¼ããã»ããµï¼ï¼ã§ã®å¦çã®ç
©éåã鲿¢ã§ã
åè·¯è¦æ¨¡ã縮å°ã§ãã广ãå¾ããããBy doing this, not only can data be written densely into the memory 40 without wasting space, reducing the memory capacity, but also data can be processed in fixed word units during both recording and playback. By being able to do this, it is possible to prevent the processing in the PCM processor 30 from becoming complicated and to reduce the circuit scale.
以ä¸ã®ãã¨ããæãããªããã«ãï¼ã¯ã¼ãã§æ§æãï½ã
å
ã®æ¨æ¬å¤ç¾¤ï¼ï¼¡ãï¼ï½âï¼ããAãï¼ï½ãï¼ãAãï¼
ï½ï¼ï¼ãï¼ã¯ç¬¦å·å¨ï¼ï¼ï¼¶ï¼£ã¦ãããå§ç¸®ããã¦ãã³ï¼
ï¼ï¼ï½ï¼ï½ãAs is clear from the above, the sample value group of n elements (A 5i-+ , A 3i * A 3
i++) is bit compressed by encoder 20VC and bin)
! ! k(m.
ï½ãï½ï¼ã«ç¬¦å·åããã¦ã®ã¡ãã¡ã¢ãªï¼ï¼ã«ï¼ã¯ã¼ãã¨
ãã¦æ¸è¾¼ã¾ããã» ãããã¦ãã¡ã¢ãªï¼ï¼ã«ï¼ï¼ï¼ã«ãããå§ç¸®ããã¦æ¸è¾¼
ã¾ãããã¼ã¿ã¯ãåè¨ããããã«ï¼°ï¼£ï¼ããã»ããµï¼ï¼
ãä»ãã¦é 次ã¯ã¼ãåä½ã§èªåãï½ï¼ãã¤ãã®èªåãï½
ãï½ãï¼âï¼ï¼ãããã®ä¸¦åã®ãã¼ã¿ã¯é次ã¯ã¼ããã¨
ã«ç´åã«å¤æããã¦åºåãï½ããã®çµæç¬¬ï¼å³ï¼ï¼ï¼ã®
ï½ã«ç¤ºãããã«ãä¸è¨ã®ãããæ°ï¼ï½ãï½ãï½ï¼ã®ç¬¦å·
ãã¼ã¿ãï¼ï¼£ï½ï¼âï¼ããAããï½ï½ãããï¼£ï¼ï½ï¼ï¼
ï¼ãï¼ï¼£ï½ï½âï¼ãï¼£ï¼ï½ï¼¨ãAãï¼ï¼ãï¼ããã®é åº
ã§ãããæ°ï¼ï½ãï½ãï½ï¼ã®ç´åãã¼ã¿ï½ã¨ãã¦ï¼°ï¼£ï¼
ããã»ããµï¼ï¼ããåºåãããããã®ç´åãã¼ã¿åºåï½
ã¯å¤èª¿å¨ã»ï¼ï¼ï¼ï¼è¨é²å¢å¹
å¨ï¼ï¼ãä»ãã¦ç£æ°ããã
ï¼ã«ããç£æ°ãã¼ãï¼ã«è¨é²ãï½ããn, m) and then written to the memory 40 as two words.The data thus compressed to 273 bits and written to the memory 40 is encoded by the PCM processor 50 as described above.
n5 and its reading n
The parallel data of n (-8) bits is sequentially converted word by word into serial data and output n, and as a result, the number of bits (m, n, m ) code data (Cx1-+ , A, xi, C5i++
) is PCM as serial data g with the number of bits (m, m, n) in the order of (Csi-+, C3iH, A 57 )
It is output from the processor 50. This serial data output g
is the modulator/811. The information is recorded on the magnetic tape 4 by the magnetic head 3 via the recording amplifier 60.
å¾ã£ã¦ãå
¨ã¦ã®æ¨æ¬å¤âï½ï¼ï½ãï¼âï¼ï¼ãã¢ï¼ã§ç¬¦å·
åãã¦ãããï¼ï¼
ãï¼ï¼ï¼ï¼ï¼ï¼ï¼ã®ç´åãã¼ã¿ã¨ãã¦
è¨é²ãã徿¥æ¹å¼ã¨æ¯ã¹ã¦è¨é²ãã¼ã¿ã®ä¼éã¬ã¼ããï¼
ï¼ï¼ã«ç¸®å°ãããã¨ãã§ãããTherefore, compared to the conventional method in which all sample values 'l&n (-8) vias are encoded and recorded as serial data of 3% (8, 8, 8) bits, the transmission rate of recorded data is reduced by 2.
It can be reduced to /3.
次ã«ãæ¬çºæã«ä¿ãã復å·å¨ï¼ï¼ã®ä¸å®æ½ä¾ãï½ï¼å³ã«
ããã®åä½èª¬æç¨ã®å鍿³¢å½¢å³ã第ï¼å³ã«ç¤ºããåçæ
ã«ããã¦ã¯ãä¸è¨ã«ããè¨é²ãï½ããã¼ã¿ã¯ç£æ°ãã¼ã
ï¼ï¼ï¼ªï¼ãç£ï½âã¸ããï¼ã«ããåçããã¦ãåçã¤ã³
ã©ã¤ã¶ï¼ï¼ã¨å¾©èª¿å¨ï¼³ï¼¯ã«ã¦é©å®åçå¾ï¼ï½ï¼ããªã¼ï¼
ï¼ã¦ã復調å¨ï¼ï¼ãããã¯ä¸è¨ã®ç´åãã¼ã¿åºåï½ã¨å
æ§ã®ï¼ï¼£ï¼ï½âï¼ãããï¼£ï¼ï¼©ï¼ï¼ãNext, an embodiment of the decoder 90 according to the present invention is shown in Fig. m5, and a waveform diagram of each part for explaining its operation is shown in Fig. 6. During reproduction, the data recorded above is transferred to the magnetic tape 4. J: Regenerated by the node 3 to the magnetic field t°C, and after being appropriately reproduced by the reproduction equalizer 70 and the demodulator SO, 1p1
ï¼ï¼ From the demodulator 81], the same serial data output g as described above (C3i-+, C3I++.
Aï¼ï¼ï¼ã®é åºã§ãããæ°ï¼ï½ãï½ãï½ï¼ã®ç´åãã¼ã¿
åºã«ã¤ï¼çï¼å³ã®ï½ï¼ãå¾ãå ããA serial data output (l in Figure 6) of the number of bits (m, m, n) is obtained in the order of A31).
ãã®ç´åãã¼ã¿åºã«ã³ã¯ãï¼°ï¼£ï¼ããã»ããµï¼ï¼ãä»ã
ã¦ã¯ã¼ãæ¯ã«ä¸¦åãã¼ã¿ã«å¤æããã¦ãã鿬¡ã¡ã¢ãªï¼
ï¼ã«æ¸è¾¼ã¾å ããã¡ã¢ãªï¼ï¼ã«ï¼ï¼£ï¼ï½âï¼ãï¼£ï¼ï½ï¼
ï¼ãããï½ï¼ã®é ã§æ¸è¾¼ã¾ãããã¼ã¿ã¯ã¾ãï½ï¼ï¼ï¼ï¼
ãã¯ãã®ãã¼ã¿ï¼£ï¼ï½âï¼ããç¶ãã¦ï½ï¼âï¼ï¼ããã
ã®ãã¼ã¿ï¼¡ï¼ï½ããããã«å¼ï¼ç¶ãæ®ãã®ï½ï¼âï¼ï¼ã
ããã®ãã¼ã¿ï¼£ï½ï½ï¼ï¼ãéï¼å¤§èªåãããå¾ã£ã¦ï¼°ï¼£
ï¼ããã»ããµï¼ï¼ããã¯ãä¸è¨ç¬¦å·å¨ï¼ï¼ããã®åºåï½
ã¨åæ§ã®åºåï½âãï½ï½ï½ï¼å³ã®ï½âï¼ãå¾ããããã®
åºåï½â²ã¯ç¬¬ï¼å³ã«ç¤ºã復å·å¨ï¼ï¼ã®ç«¯åï¼ï¼ï¼ã«ä¾çµ¦
ããããThis serial data output is converted into parallel data word by word via the PCM processor 30, and then sequentially transferred to the memory 4.
Write it to 0. In the memory 40 (C3i-1, C3i+
The data written in the order of 1, ni) is first m (=4)
Pict data C3i-+, then n(-8) bits of data A5i, and then the remaining m(-4) bits of data Csi+1 of the bow are read sequentially/largely, and therefore the PC
The M processor 30 outputs the output f from the encoder 20.
An output a'(a') in Fig. 6 is obtained, and this output a' is supplied to a terminal 901 of a decoder 90 shown in Fig. 5.
ããã§åè¨ï¼ï¼ï¼å¼ãããå
ã®æ¨æ¬å¤ï¼¡ï¼ï¼âï¼ã¨ï¼¡ï¼
ï¼ï¼ï¼ã¯æ¬¡å¼ã«ããæ±ãããã¨ãã§ãããHere, from the above equation (1), the original sample values A31-1 and A3
141 can be calculated using the following equation.
復å·å¨ï¼ã¤ï¼ã¯ãè¨é²åçãããä¸è¨ãã¼ã¿ï¼ï¼£ï¼ï½â
ï¼ãThe decoder (A) receives the recorded and reproduced data (C5i-
+.
Aï¼ï¼ï¼ï¼£ï¼ï¼©ï¼ï¼ï¼ããï½ãï¼ï¼ãï¼ï¼ãã¨ï¼ãï¼ï¼
ï¼ï¼ï½âã¿ï¼¢ãï½ï½âï¼ãããï¼¢ãï½ï½ï¼ï¼ã¨ï¼¡ï½ï½ã
å¾ãä¸è¨ï¼ï¼ï¼å¼ã«åºã¥ãæ¼ç®ãè¡ããã¨ã«ãã£ã¦ãå
æ¨æ¬å¤ï¼ï¼¡ï¼ï¼âããåï¼ãA31. From C3I+1), n (= 8) and 7)(
7) Obtain the f-ta B si-+ , B xi++ and Axi, and perform the calculation based on equation (2) above to obtain the original sample value (A31-, Friend!
Aï½ï½ï¼ï¼ãï¼ã復å
ããããã®ã§ãããå³ã¡ãå¡©ï¼å³
ã«ããã¦ã端åï¼ï¼ï¼ï½ï¼£å¶çµ¦ãå ãï¼°ï¼£ï¼ããã»ããµ
ï¼ï¼ããã®åºåï½â²ã¯åºæºãã¼ã¿æåãå¨ï¼ï¼ï¼ã«å
¥å
ããã䏿¹ãé
å»¶å¨ï¼ï¼ï¼ã«ã¦ãµã³ããªã³ã°å¨æÏã«ç¸
å½ããæéé
å»¶ããï¼ï¼ããã®åºåã
ï¼ç¬¬ï¼å³ã®ï½ï¼ï¼
ã¯ï¼²ï¼¯ï¼ãï¼ï¼ï¼ã®ï½ãããã®ã¢ãã¬ã¹ä¿¡å·ã¨ãã¦ä¾çµ¦
ããããIn other words, in Figure 5, the output a' of the PCM processor 60 fed to the terminal 901iC is input to the reference data extractor 950, while the sampling period is determined by the delay device 910. Time delay tab 11 corresponding to Ï, its output ã
(b/ in Fig. 6)
is supplied as an m-bit address signal for the ROM 950.
ï¼²ï¼ï¼¯ï¼ãï¼ï¼ï¼ã«ã¦ä¸è¨é
å»¶å¨ï¼ï¼ï¼ããåºåããã
ï½ï¼ï¼ï¼ï¼ãããã®ãã¼ã¿ï¼£ï¼ï½âï½ãããï¼£ï½ï½ï¼ï¼
ã¯åè¨ç¬¬ï¼å³ã«ç¤ºããç¹æ§ã«éµ¡ãã¦ï½ï¼âï¼ï¼ãããã®
ãã¼ã¿ï¼¢ï½ï½âï¼ãããï¼¢ï¼ï½ï¼ï¼ã«ããï¼ãã夿ã
ãããm (=4) bit data C3i-i, Cgi+1 output from the delay device 910 at R,OM 950
are converted into n(-8) bit data Bxi-+ and B3i++, respectively, according to the characteristics shown in FIG.
ãã®âä¾ã¨ãã¦ã第ï¼å³ã«ç¤ºãããã«é
å»¶å¨ï¼ï¼ï¼ãã
ã®åºåãã¼ã¿ï¼£ï½ãï½ãã«å¯¾å¿ãã¦ããå ´åã«ã¯ãï¼ï¼
ã®å¤ãæãããã¼ã¿ï¼¢ï½ãï¼²ï¼ï¼¯ï¼ãï¼ï¼ï¼ããåºåã
ãããAs an example, if the output data Ci from the delay device 910 corresponds to a, as shown in FIG.
Data Bi having the value is output from R,OM 950.
ããï¼»ï¼ã¦ãROï¼ï¼ï¼ï¼ï½ã§ï½ãï¼âï¼ï¼ãã¢ï¼ã«å¤
æãï½ãåºåï¼£âï¼ï¼¢âï¼å³ã®ï¼£â²ï¼ã¯æ¸ç®å¨ï¼ï¼ï¼ã®
䏿¹ã«ä¾çµ¦ãï½ããThe output C'(C' in Figure B'6) thus converted into n (-8 vias) by the ROM 950f is supplied to one side of the subtracter 940.
åºæºãã¼ã¿æåãå¨ï¼ï¼ï¼ã«ã¦ãä¸è¨åºåï½â²ãããï¼´
ï¼ï¼ã«å«ã¾ããåºæºãã¼ã¿ï¼ï¼¡ï¼ªï½ï¼ãæåãããã¤ã
ã§ã®æéãã®åºæºãã¼ã¿ããã¼ã«ãããã¦åºåãï½ãã
ããã®åºæºãã¼ã¿æåãå¨ï¼ï¼ï¼»ï¼ããã®åºåï½âï¼ç°
ï¼å³ã®ï½ï½âï¼ã¯æ¸ç®å¨ï¼ï¼ï¼ã®ä»æ¹ã«å
¥åãï½ããã¨
å
±ã«ãã¼ã¿ã»ã¬ã¯ã¿ï¼ï¼ï¼ã®ï½åï¼âï¼âã«ä¾çµ¦ããã
ãæ¸ç®å¨ï¼ï¼ï¼ã«ã§ä¸è¨åºåï½â²ï¼ã®åºæºãã¼ã¿ï¼¡ï¼ï¼
ï¼ã¨ï¼ãé
åºåï¼£â²ï¼ã®ãã¼ã»ãï¼¢ï½ï¼âï¼ãï¼ï¼ï¼â¡
ï¼ï¼ï¼ã¨ã®å·®åæ¼ç®ãè¡ãå ã¦ãåè¨ï¼ï¼ï¼å¼ã§ç¤ºãã
å·®åãã¼ã¿ï¼ï¼¡ï¼ï¼âï¼ã¨ï¼¡ï½ï½ï¼ï½ï¼ãæ¸ç®å¨ï¼ï¼ï¼¤
ããåºåãããããã®åºåï½
âï¼ç¬¬ï¼å³ã®ãï¼ï¼ã¯ãã¼
ã¿ã»ã¬ã¯ã¿ï¼ï¼ï¼ã®ç«¯åï¿¥ï¼ã«ä¾çµ¦ããããThe reference data extractor 930 extracts T from the above output a'.
1. The reference data (AJi) included in the reference data (AJi) is extracted, and the reference data is held for a period of time and output. The output d'(ct' in Figure 6) from the reference data extractor 95[3 is input to the other input of the subtracter 940 and is also supplied to the data selector 960 (i) ``7''. The subtracter 940 receives the reference data A31 of the output d'(
) and), distribution output C'('s data riBs1-+, 135â¡
+1) is performed, and the difference data (A31-1 and Axi+t) shown in equation (2) above is sent to the subtracter 94D.
It is output from This output e' (/ in FIG. 6) is supplied to the terminal \1 of the data selector 960.
ãã¼ã¿ã»ã¬ã¯ã¿ï¼ï¼ï¼ï¼·ã¦ä¸è¨åºåï½â²ããåºæºãã¼ã¿
ï¼ï¼¡ãï½ï½ï¼ãä¸è¨åºåï¼£â²ããå·®åãã¼ã¿ï¼ï¼¡ï¼â¡â
ï¼ã¨ï¼¡ï¼ï½ï¼ï¼ï¼ããããï¼ã鏿ãå ããããï¼ã¦å
æ¨æ¬å¤ï¼ï¼¡ï¼ï¼âï¼ãï¼ã¸ï¼ï½ãï¼ãAï¼ï½âï¼ï¼ï¼¶ï½
対å¿ãã«ãã¼ã¿ï½âï¼ï¼¨ï¼å³ï½ï½â²ï¼ã復å
ããã¦ç«¯å
ï¼ï¼ï¼ã«åºåããããThe data selector 960W selects the reference data (A si) from the output d' and the difference data (A3â¡-) from the output C'.
4 and A5i++) are each selected as 1, and then the original sample value (A31-1 + to 3i * A5iâ1)Vr
Corresponding data f'(nf' in Figure H6) is restored and output to terminal 902.
ãªãã以ä¸ã®å®æ½ä¾ã¯ãï¼ã¤ã®æ¨æ¬å¤ï¼ï¼¡ï¼ãâï¼ãâ
Aï¼â¡ï¼ãAï½ï½ï¼ï¼ãï¼ãï¼ï¼ï¼ãâï½ã¡ãAï¼â¡ã
åºæºæ¨æ¬å¤ã¨ããä»ã®æ¨æ¬å¤ï¼ï¼¡ãï½åã¨ï¼¡ï¼ï¼ï¼ï¼ã
ï¼ãåæã·ï¼ï¼ï¼å¼ã«ç¤ºãããããã«ãåºéæ¨æ¬å¤ã¨ã®
å·®åã«åºã¥ãã¦å¼±åããä¾ã示ããããæ¬çºæã¯ããï¼»
éå®ããããã®ã§ã¯ï½ãï¼ã次å¼ï¼ï¼ï¼ã«ç¤ºãããã«ã
ä¸è¬ã«ãã®æ¨æ¬ç«¯å
ã®ãã¡ã®ä»»æã®å°ãªãã¨ãï¼ã¤ã®æ¨
æ¬å¤ï¼ï¼¡ãï½ï½âï¼ãï¼ãåºéæ¨æ¨å¤ã¨ããæ®ãã®æ¨æ¬
å¤ã®ï¼ãã®ä»»æã®å°ãªãã¨ãï¼ã¤ã®æ¨æ¬å¤ï¼ãAãï½ï½
ãï¼ãâé
åºæ¼æ¨æ¬å¤ï¼ï¼¡ï¼ï½âï¼ï¼ãKé¢é£ããå·®å
ã«åºã¥ãã¦ç¬¦å·åããä»ã®æ®ãã®æ¨æ¬å¤ï¼ï¼¡ï¼ãï½ï¼ï¼
ãï¼ãä¸è¨åºæºæ¨æ¬å¤ã«ãããä¸è¨æ¨æ¬å¤ï¼ï¼ï¼
ï¼ï½ï¼
Ké¢é£ããå·®åã«åºã¥ãã¦ç¬¦å·åãã¦ãè¯ãããã®å ´å
ã«ã¯ãåºæºæ¢æ¨å¤ã¸ãã¼ï¼ããå
æ¨æ¬å¤ï¼¡ï¼ï¼ï½â復å
ã§ããæ´ã«ãã®å¾©å
ï¼ï¼ãAï¼ï½ããå
æ¨æ¬å¤ï¼¡ï½ï½ï¼
ï¼ã±å¾©å
ã§ãããIn addition, in the above embodiment, three sample values (A5 to + -
A3â¡ = Asi++ ) +7) 'i, A3â¡ is the reference sample value, and other sample values (A, i edition and A3141
) was shown in Equation (1) in the previous section, and an example was shown in which it is weakened based on the difference from the base sample value, as shown in FIG.
In the limited case, t [<, as shown in the following formula (3),
In general, at least one arbitrary sample value (A, siâ+ ) within the sample edge is taken as the base marker value, and at least one arbitrary sample value (, A si
) is encoded based on the â base fishing sample value (A5i-1) K related differences, and the other remaining sample values (A!, i++
) is the above sample value/7%3i) regardless of the reference sample value above.
Encoding may be performed based on K-related differences. In this case, the original sample value A31k- can be restored from 1 to the reference tree value, and this restoration 1. The original sample value Axi+
+ Can be restored.
ï½ãä¸è¿°ã¹ãããã«ï¼¸çºæã¯ãä¸è¬ã«å
«åã®æ¨æ¬å¤ã®ã¡
ã¡å°ãªãã¨ãï¼ã¤ãåºæºï½
ãï½ï¼ãã¤ï½ï¼ã¨ãã¦ï½ï¼ã¢
å誤差ãç¡è¦ã§ããç¨åº¦ã®ååãªãããæ°ï½ã§ç¬¦å·ã¤ã
ããä»ã®ä¿¸æ¬å¤ã³ãï¼â²ï¼ï¼ãï½ãå°ããªãããæ°ï½ã§
符å·åââ²ï½ããã¨ãç¹å¾´ã¨ããããã«ããå
¨æ¨æ¬å¤ã
ãããæ°ï½ã§ç¬¦å·åãã徿¥æ¹å¼ã¨æ¯ã¹ã¦ãä¼éãªãã
è¨é²åçããããã¼ã¿ã®ãããæ°åã³ä¼éã¬ã¼ãï¼ï¼ï½
ï¼ãï¼ï¼®âï¼ï¼ãXï½ï½ï¼ãï¼®ãXãï½ã«ç¸®å°ãããã¨
ãã§ãããAs mentioned above, the X invention generally uses at least one of the eight sample values as the reference e, t: i, and then h(i) with a sufficient number of bits n so that the conversion error can be ignored. , other salary values are characterized by encoding with a smaller number of bits m, compared to the conventional method in which all sample values are encoded with a smaller number of bits n. Number of bits of data to be transmitted or recorded and reproduced and transmission rate? (n
+ (N-1) X ml/N X n.
ã¾ããæ¬çºæã«ããã°ããããå§ç¸®åã³ãã®éã®ä¼¸é·ã¯
å
±ã«å
«åã®æ¨æ¬å¤ãã¨ã«å®çµãã¦è¡ãããããããã®æ¨
æ¬å¤ç¾¤ä»¥å¤ã®ä»ã®æ¨æ¬å¤ç¾¤ã«éååéé³ã符å·èª¤ããªã©
ã®å½±é¿ãç´¯ç©ä¼æããããã¨ã¯ãªããã¾ããããå§ç¸®ä¼¸
é·ãã²ãã符å·å¨ï¼ï¼ï¼ï¼åã³å¾©å·å¨ï¼ï¼ï¼ï¼ã¯ãå
ã®
宿½ä¾ããæãããªããã«ãããï½ããã£ã¼ãããã¯ã«
ã¼ããªæãããã£ã¼ããã©ã¯ã¼ãå½¢å¼ã§æ§æã§ãããã
ãä¸è¨ã®éååéé³ã符å·èª¤ãã®å½±é¿ã次ã
ã¨å°¾ãå¼ã
ãããªãã¨ã¯ãªããããã®å½¢åæå°éã«æãããã¨ãã§
ãããFurthermore, according to the present invention, since both bit compression and its inverse expansion are performed for each eight sample values, quantization noise and code errors may occur in other sample value groups other than that sample value group. The influence of the encoder (20) and the decoder (90) that perform bit compression/expansion do not have any feedback loop, as is clear from the previous embodiment. Since it can be configured in a feedforward format, the effects of the above-mentioned quantization noise and code errors do not continue to linger, and these effects can be minimized.
æ´ã«ã忍æ¬å¤ç¾¤æ¯å§é»åå誤差ã®å°ãªãåºæºæ¨æ¬å¤ã
å«ã¾ãã¦ãããä¸è¨ã®ç¬¦å·ååã³å¾©å·åã¯ãã®åºæºæ¨æ¬
å¤ãåºæºã«ãã¦è¡ãããããããããå§ç¸®ä¼¸é·ã«ä¼´ãªã
ç«¥åå誤差ãä¿¡å·å£å乿å°éï½æãããã¨ãã§ãï¼ï¼
ãFurthermore, since each sample value group includes a reference sample value with a small piezoelectric conversion error, and the above encoding and decoding are performed based on this reference sample value, there is no error due to bit compression/expansion. 5. Minimize conversion errors and signal deterioration to a minimum.
.
以ä¸ã®å®æ½ä¾ã¯ï¼¶ï¼´ï½ï½ãªã©ã®ç£æ°é
é²åçè£
ç½®ã«æ¬çº
æãé©ç¨ããè¹ã§ããããæ¬çºæã¯ãï½ãã«éããã®ã§
ã¯ãªããç»åä¿¡å·ä»¥å¤ã®é³å£°ä¿¡å·ãªã©ä»»æã®æ
å ±ä¿¡å·ã
è¨é²åçããã«ã¨ã©ã¾ããä»»æã®ä¼éåªä½ã«ãã£ã¸ã¿ã«
ä¿¡å·ã¨ãã¦ä¼éããå ´åã«é©ç¨ã§ãããã®ã§ãããæ¬çº
æã®ä¸»æ¨ãããããã®ã§ã¯ãªããThe above embodiment is a ship in which the present invention is applied to a magnetic recording and reproducing device such as a VTlt, but the present invention is not limited to this, and the present invention is not limited to this, and can record and reproduce arbitrary information signals such as audio signals other than image signals. The present invention can be applied not only to the transmission of digital signals to any transmission medium, but does not depart from the gist of the present invention.
ã¾ãã以ä¸ã®å®æ½ä¾ã«ç¤ºããæ¨æ¬åã«é¢ããç°ï¼é¢ï¼ï¼
ï¼ã¯ç»åä¿¡å·ï¼¶ãæé颿°ï¼¶ãï¼ï¼ï¼ã®ï¼æ¬¡å
ä¿¡å·ã¨ã¿
ã¦ãããã°æ°´å¹³èµ°æ»æ¹åã«ï¼æ¬¡å
æ¨æ¬åããå ´åã示ã
ãããæ¬çºæã¯ãï½ãã«éããã®ã§ã¯ãªãã第ï¼å³ã«ç¤º
ãããã«ãç»åä¿¡å·ï¼¶ãï¼æ¬¡å
ä¿¡å·ï¼¶ãï¼ï½ãï½ï¼ï¼ï½
ã¯ç»åä¿¡å·ï¼¶ã®æ°´å¹³èµ°æ»æ¹åã®æ¨æ¬å¤æ¯ãï½ã¯åç´èµ°æ»
æ¹åã®æ¨æ¬å¤æ¯ã示ããï¼ã¨ãã¦åç´èµ°æ»æ¹åï¼ï½æ¹å
ï¼ã«ããããã¯æãæ¹åï¼©ï¼£ï¼æ¬¡å
æ¨æ¬åããå ´åã«ã
æ¬çºæãé©ç¨ã§ããå¾ããã广ã¯ã¾ã£ããåæ§ã§ãã
ãIn addition, regarding the sampling shown in the above example,
) shows the case where the image signal V is regarded as a one-dimensional signal of the time function V (11) and is one-dimensionally sampled in the horizontal scanning direction, but the present invention is not limited to this, and FIG. As shown, the image signal V is transformed into a two-dimensional signal V (x, y) (x
represents each sample value of the image signal V in the horizontal scanning direction, and y represents each sample value in the vertical scanning direction. ), the present invention can be applied to two-dimensional IC sampling in the vertical scanning direction (y direction) or in the diagonal direction, and the obtained effects are exactly the same.
ãªãããã®éï¼å³ã¯ï¼®âï¼ã¨ãã¦ï¼ã¤ã®æ¨æ¬å¤æ¯ã«âå°
ã§ç¤ºãæ¨æ¬å¤ãåºæºæ¦ï½å¤ã¨ããï½ï¼ãããã§ç¬¦å·åã
ãXå°ã§ç¤ºãæ¨æ¬å¤ãä¸è¨åºæºæ¨æ¬å¤ã¨ã®å·®åã«å¿ãã¦
ï½ï¼ï¼ï½ï½ï¼ãããã§ç¬¦å·åããå ´åã示ããï¼ç¬¬ï¼å³
ã®ï¼ï¼ï¼ã¯ï¼ç»åä¿¡å·ï¼¶ãï¼ï½ãï½ï¼ãããã£ã¼ã«ãå
ä½ã§åç´æ¹åï¼ï½æ¹åï¼ã«ï¼âï¼ï¼ããï¼âï¼âããï¼
âï¼âã»ã»ã»ã®èµ°æ»é åºã§é æ¬¡æ¨æ¬åããå ´åã®å®æ½ä¾
ã示ããåå³ã®ï¼ï¼ï¼ã¯ãç»åä¿¡å·ï¼¶ãï¼ï½ãï½ï¼ãå¥
æ°ãã£ã¼ã«ãï¼å®ç·ã®æ°´å¹³ã©ã¤ã³ã§ç¤ºããã£ã¼ã«ãï¼ã¨
å¶æ°ãã£ã¼ã«ãï¼ç ´ç·ã®æ°´å¹³ã©ã¤ã³ã§ç¤ºããã£ã¼ã«ãï¼
ã®ï¼ã¤ã®ãã£ã¼ã«ãããæ§æããããã¬ã¼ã ã®åä½ã§å
ç´æ¹åï¼ï½æ¹åï¼ï½ï½ï¼âï¼âãï¼âï¼âãï¼âï¼âã
ã»ã»ã»ã®èµ°æ»é åºã§é æ¬¡æ¨æ¬åããå ´åã®å®æ½ä¾ã示ã
ããªãããã®ç¬¬ï¼å³ã®ï¼æ¬åãè¡ãããã«ã¯ãç¹ï½ã¯å³
示ããªãããå
ã®çï¼å³ã®å®æ½ä¾ã«ããã¦ï¼¡ï¼ï¼¤å¤æå¨
ï¼ï¼ããã®åºåãâHã¡ã¢ï¼ï½ï¼ï¼ã«ãã£ã¼ã«ãåä½ãª
ããã¯ãã¬ã¼ã åä½ã§æ¸è¾¼ããã¨ã«ãããä¸è¨ï¼æ¬¡å
ä¿¡
å·ï¼¶ãï¼ï½ããï¼¹ï¼ãï½ï½ï¼ã¡ã¢ãªï¼ï¼å
ã«å½¢æã§ãã
ããããããã¦æ¸è¾¼ã¾å ãä¿¡å·ï¼¶ï¼ï½ãï½ï¼ä¹ã¡ã¢ãªï¼
ï¼ãããã®åç´èµ°æ»æ¹åã«é次èªåããã®åºåã符å·å¨
ï¼ï¼ã«ä¾çµ¦ããä¸ã¨ï¼ï¼ããä¸ï¼åæ§ã®ãããå§ç¸®ãè¡
ããããâ²ãã¨ãã§ãããæ´ã«ãæ¬çºæã«ããï½äºï½ã
ä¸ï¼åºæºæ¨æ¬å¤ã®ã¨ãæ¹ã¯ãããã®å«ã¾ï½â²ï½ä¹æ¨æ¬å¤
群ã®ä¸ï¼ï¼ä»»æã®ä½ç½®ããã¨ããã¨ãã§ãããçºæã®ä¸»
æ¨ããï½ããã®ã§ã¯ãªããIn addition, in this figure 7, the sample value marked with a circle for every two sample values as N-2 is encoded with 1 bit as the reference friction f value, and the sample value indicated with an (1) in Fig. 7 shows the case where the two image signals V (x, y) are encoded with m (<rl) bits in field units in the vertical direction (y direction) by 1-1/, 2-2', 3
An example is shown in which sampling is performed sequentially in the scanning order of -3'..., and (2) in the same figure shows that the image signal V (x, y) is divided into odd fields (fields indicated by solid horizontal lines). Even fields (fields indicated by dashed horizontal lines)
vertical direction (y direction) ff1-1', 2-2', 3-3',
An example is shown in which samples are sequentially sampled in the scanning order of . Incidentally, in order to convert the output into eight lines in FIG. 7, although the feature f is not shown, the output from the A/D converter 10 in the embodiment shown in FIG. By writing in frame units, the two-dimensional signal V (x, Y) ff can be formed in the memory 40.
0 in the vertical scanning direction and the output thereof is supplied to the encoder 20, and 12 and above 2 are subjected to similar bit compression.Furthermore, in the present invention, j2i,
Up? The reference sample value can be taken from any position in the group of sample values (7) included in the sample value group, and this is not the gist of the invention.
第ï¼å³ã®ï¼ï¼ï¼ã¯ãåºæºæ¨æ¬å¤ã常ï½åä¸ã®ã©ã¤ã³ãã
ã¨ãããã«ããä¾ã示ãããã®æ¹æ³ã«ãï½ï¼ã°ãããã
å§ç¸®ã®å½±é¿ã¯åç´æ¹åã§ããç®ç«ã¤ããã«ã¯ãªããæ°´å¹³
æ¹åã«å¯¾ãã¦ã¯æ¯è¼çè¦è¦çã«ç®ç«ã¡é£ãã§ãã广ã
å¾ããããã¾ã第ï¼å³ã®ï¼ï¼ï¼ã¯å䏿°´å¹³ãã»ã¤ã³ãã
åºæºæ¨æ¬å¤ãéå¼ãããã«ãã¦æ½åºããä¾ã示ããï¼ã
ã®æ¹æ³ã«ããã°ããããå§ç¸®ã®å½±é¿ã¯æãæ¹åã«ç¾ãï¼´
ãç³ãããè¦è¦çã«ç®ç«ã¡é£ãã¦å¤§ç³å¹æãå¾ãï½ããFIG. 7 (1) shows an example in which the reference sample values are always taken from the same line. With this method, the effect of bit compression becomes somewhat noticeable in the vertical direction, but relatively less visually noticeable in the horizontal direction. In addition, (2) in Figure 7 shows an example in which reference sample values are extracted by thinning out from the same horizontal groove.3 According to this method, the influence of bit compression appears in the diagonal direction.
, because it is a stone accumulation, it is not visually noticeable and a large stone effect can be obtained.
ï¼âï½âï¼»ä¸è¨ç°ï¼å³åã³å¡©ï¼å³ã«ããã¦ããµãããªã³
ã°å¨è¨æ°ä¹é©å®é¸ã³ããããã¯ä¸è¨åºæºæ¨æ¬å¤ã®ã¨ãæ¹
ãé©å®å¤ãï¼£ï¼ ä¸è¨åºæºæ¨æ¬å¤ã®æ¨ãï¼ï¼ã»ä½ç¸ãã»ï½âããâãâã
ï¼±ããâ卿ãããã¯ãã¬ã¼ã 卿ã§åä½ç¸ã¨ãªããªã
ããã«ãå
·ä½çã«ã¯ä¾ãã°ç®ï¼å³ï¼ï¼ã³ã®ï¼¡ï¼«ç¤ºãæ¨æ¬
ç¹ã«ããã¦ãæåã®ãã¬ã¼ã ã§ï¼ç¹ãåºæ¼æ¨æ¬å¤ã®æ¨æ¬
åä½ç¸ã¨ãããï¼å³ã¡âå°ã«ç¸å½ï¼ã4-t-[In the above-mentioned Figure 3 and Figure 7, select the number of sapplings as appropriate, or change the method of taking the reference sample value as appropriate. C2 The standard ~11 phase of the reference sample value is ã»j', âãâã
Specifically, for example, in Figure 7 (at the sampling points indicated by AK in number 2, 4 points in the first frame are set to the sampling phase of the base sample value, so that they do not have the same phase in the Q, T' period or frame period). Then (i.e. corresponds to the â mark).
次ã®ãã¬ã¼ã ã§ã¯ï¼¡ç¹ï¼åºæºæ¨æ¬å¤ã®æ¨æ¬åä½ç¸ã¨ã¯ã
ãªãï¼å³ã¡ï¼¸ãï¼¥ï½ï¼¥ãKç¸å½ï¼ããã«ããã®å¨æãã¨
ã«åºé¨æ¨æ¬å¤ã®æ¨æ¬ç¹ãé©å®å¤ãã¦ãããã¨ã«ãããã
ããå§ç¸®ã«ä¼´ãªãç»ç´ çä½ã®å¦¨å®³ãã¤ã³ã¿ã¼ãªã¼ããï¼
ï¼ã¦è¦è¦çã«ãã®å¦¨å®³ãç®ç«ã¡æãã§ãã广ãå¾ãï½
LããPoint A in the next frame! By appropriately changing the sampling point of the base sample value for each period so that it is not the sampling phase of the reference sample value (that is, equivalent to interleaved 1
1. You can achieve the effect of visually making the disturbance more noticeable.
L.
以ä¸è¿°ã¹ããããã«æ¬çºæã«ããã°ãä¼éãã¹ãæ
å ±ä¿¡
å·ã®å£åä¹çããããªãã§ããããã¯çãã¦ããã®å½±â³
ãè¦ãå°ãªããã¾ãåååéé³ã®é¡æªã符å·èª¤ãã«ãã
ã¨ã©ã¼ä¼æ¬ï¼çãããã¨ãªãä¿¡å·ã®âãï¼ï¼ãå¹çè¯ã
使¸ãããã¨ãã§ãããã®åä¼éã¬ã¼ãã使¸ã§ããå¾
ã£ã¦ãã£ã¸ã¿ã«ï¼¶ãï¼´ãï¼²ã®ãããªç£æ°è¨é²åçè£
ï½ã«
ããã¦ã¯ããã¼ãã®è¨é²å¯åº¦ãå®è³ªçã«é«ãããã¨ãã§
ããå°å½¢ã«ã»ï¼ï¼ã§ååãªé²ç»æéã確ä¿ã§ããããã®
ãã¼ãã¦ã§ã¢ã®åä½éï¼åº¦ã使¸ããã¦ï¼©ãï¼£åã容æ
ã¨ãªããç¶æ§ã®ã³ã¹ã使·åã³ä¿¡é ¼æ§åä¸ã¶å³ãããªã©
ã®å¹æãå¾ãï½ããAs stated above. [According to the present invention, the information signal to be transmitted is not degraded, or if it occurs, its effects are not affected.
, â, 11 of the signal can be efficiently reduced without occurrence of error propagation 7 due to patterning noise or code errors, and the transmission rate can be reduced accordingly. In magnetic recording and reproducing devices such as a, the recording density of the tape can be substantially increased, sufficient recording time can be secured with a small cassette 7), and the operating speed of the hardware has been reduced by 1 degree. It will also be easier to implement IC, which will reduce paternity costs and improve reliability.
éï¼å³ã¯æ¬çºæã®ä¸å®æ½ä¾ã示ããããã¯å³ãéï¼å³ã¯
æ¬çºæã«ä¿ãã符å·å¨ã®ä¸å®æ½ä¾ã示ããããã¯å³ã第
ï¼å³ã¯ãã®å鍿³¢å½¢å¸ãéï¼å³ã¯ãã®ç¬¦å·åã³å¾©å·ç¹æ§
ã示ãç¹æ§å³ãçï¼å³ã¯æ¬çºæã«ä¿ãã復å·å¨ã®ä¸å®æ½
ä¾ã示ããããã¯å³ï¼
ï¼ ï¼å³ã¯ãã®å鍿³¢å½¢å³ã第ï¼å³
ã¯æ¬çºæã«ä¿ããæ¨æ¬åæ¹æ³ã示â²ï½æ¨¡å¼å³ã§ããã ï¼ï¼ï¼ï¼ï¼ï¼ï¼ã»ã»ã»é
å»¶å¨ã» ï¼ï¼ï¼ãï¼ï¼ï¼ã»ã»ã»åºé¨ãã¼ã¿æåãå¨ãï¼ï¼ï¼ãï¼
ï¼ï¼ã»ã»ã»ï¼ï¼ï½ãç®å¨ãããï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼»ï¼½ã»ã»
ã»ï½ï¼ãOï¼ãã ï¼ï¼ï¼ï¼ï¼ï¼ï¼ã»ã»ãã¼ã¿ã»ã¬ã¯ã¿ã ï¼ï¼ã»ã»ã»ç¬¦å·å¨ããããããï¼ï¼ã»ã»ã»å¾©å·å¨ãFig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing an embodiment of the encoder according to the present invention, Fig. 6 shows the waveforms of each part thereof, and Fig. 4 shows the codes and codes thereof. Figure 5 is a block diagram showing an embodiment of the decoder according to the present invention, Figure 6 is a waveform diagram of each part thereof, and Figure 7 is a sampling method according to the present invention. It is a schematic diagram. 210.910... Delay device, 230 or 950... Base data extractor, 240, 9
10...? 1g, calculator, 2511.95 []...
ã»l(,OM. 260.960...Data selector, 20...Encoder, 90...Decoder.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4