ãï¼ï¼ï¼ï¼ã[0001]
ãçºæã®å±ããæè¡åéãæ¬çºæã¯ããããã¹ããªã¼ã
ã«å«ã¾ãã主æ åãã¼ã¿ã坿 åãã¼ã¿ãé³å£°ãã¼ã¿ã
ãã³ã¼ããããã³ã¼ãè£
ç½®ããã³ãã³ã¼ãæ¹æ³ã«é¢ã
ããBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decoding device and a decoding method for decoding main video data, sub video data and audio data included in a bit stream.
ãï¼ï¼ï¼ï¼ã[0002]
ã徿¥ã®æè¡ã徿¥ã®ãã³ã¼ãè£
ç½®ã¨ãã¦ã¯ãããã¯ã
ãããPESãããããã£ãããããã¡ã¡ã¢ãªã«æ ¼ç´
ãããã®å¾ãCPUãç¨ãã¦ã·ã¹ãã ã¯ããã¯ãªãã¡ã¬
ã³ã¹ããã¬ã¼ã³ãã¼ã·ã§ã³ã¿ã¤ã ã¹ã¿ã³ããè§£æããã
ã¨ã«ãããåæåãããè¡ããã®ãç¥ããã¦ããã2. Description of the Related Art As a conventional decoding device, a pack header or a PES header is temporarily stored in a buffer memory, and then a CPU is used to analyze a system clock reference and a presentation time stamp to perform synchronization. Are known.
ãï¼ï¼ï¼ï¼ã[0003]
ãçºæã解決ãããã¨ãã課é¡ã徿¥ã®ãã³ã¼ãè£
ç½®ã§
ã¯ãCPUããã³ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°
ã管çããããã«ãCPUã¯ãã·ã¹ãã ã¯ããã¯ãªãã¡
ã¬ã³ã¹ã¨ãã¬ã¼ã³ãã¼ã·ã§ã³ã¿ã¤ã ã¹ã¿ã³ãã¨ã®å¯¾å¿é¢
ä¿ãçµ¶ããæ´æ°ããå¿
è¦ããã£ãããã®ãããCPUã¨
ãã³ã¼ãè£
ç½®ã¨ã®éã®å¶å¾¡ãè¤éã¨ãªããCPUã®è² è·
ã大ããã¨ããåé¡ç¹ããã£ããIn the conventional decoding device, the CPU needs to constantly update the correspondence between the system clock reference and the presentation time stamp in order to manage the timing at which the CPU outputs the decoded signal. was there. Therefore, there is a problem that the control between the CPU and the decoding device becomes complicated and the load on the CPU is heavy.
ãï¼ï¼ï¼ï¼ãã¾ãã徿¥ã®ãã³ã¼ãè£
ç½®ã¯ã大容éã®ã
ããã¡ã¡ã¢ãªãå¿
è¦ã¨ããã¨ããåé¡ç¹ãæãã¦ãããFurther, the conventional decoding device has a problem that it requires a large capacity buffer memory.
ãï¼ï¼ï¼ï¼ãæ¬çºæã¯ãä¸è¨åé¡ç¹ã«éã¿ã¦ãªãããã
ã®ã§ããããã®ç®çã¯ãCPUã®è² è·ãå°ããããã¤ã
ãããã¡ã¡ã¢ãªã®å®¹éãå°ãªãã¦ãããã³ã¼ãè£
ç½®ãæ
ä¾ãããã¨ã«ãããThe present invention has been made in view of the above problems, and its object is to reduce the load on the CPU and
An object of the present invention is to provide a decoding device that requires a small buffer memory capacity.
ãï¼ï¼ï¼ï¼ã[0006]
ã課é¡ã解決ããããã®ææ®µãæ¬çºæã®ãã³ã¼ãè£
ç½®
ã¯ããããã¹ããªã¼ã ããã³ã¼ããããã¨ã«ããããã³
ã¼ããããä¿¡å·ãåºåãããã³ã¼ãè£
ç½®ã§ãã£ã¦ã該ã
ããã¹ããªã¼ã ããããã¨ãã¼ã¿ã¨ã«åè§£ããåè§£å¨
ã¨ã該ãããããã該ãã³ã¼ããããä¿¡å·ãåºåããã¿
ã¤ãã³ã°ãè¦å®ãã第ï¼ã¿ã¤ãã³ã°æ
å ±ãæ½åºããæ½åº
å¨ã¨ã該第ï¼ã¿ã¤ãã³ã°æ
å ±ã該ãã¼ã¿ã®æå®ã®ä½ç½®ã«
æ¿å
¥ãããã©ã¼ããã¿ã¨ã該ãã¼ã¿ããã³ã¼ããããã¨
ã«ããã該ãã³ã¼ããããä¿¡å·ãçæãããã³ã¼ãã¨ã
該ãã³ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ã®åºæºãè¦
å®ãã第ï¼ã¿ã¤ãã³ã°æ
å ±ã¨è©²ãã¼ã¿ã®æå®ã®ä½ç½®ã«æ¿
å
¥ããã該第ï¼ã¿ã¤ãã³ã°æ
å ±ã¨ã«åºã¥ãã¦ã該ãã³ã¼
ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ãå¶å¾¡ããåºåå¶å¾¡
å¨ã¨ãåãã¦ãããããã«ããä¸è¨ç®çãéæããããA decoding device of the present invention is a decoding device for outputting a decoded signal by decoding a bit stream, and a decomposing device for decomposing the bit stream into a header and data. An extractor for extracting from the header first timing information defining timing for outputting the decoded signal; a formatter for inserting the first timing information at a predetermined position of the data; A decoder for generating the decoded signal by decoding,
Control timing of outputting the decoded signal based on second timing information defining a reference of timing of outputting the decoded signal and the first timing information inserted at a predetermined position of the data And an output controller, which achieves the above object.
ãï¼ï¼ï¼ï¼ãåè¨ãã¼ã¿ã¯ãè¤æ°ã®ãã¼ã¿é¨åãå«ãã§
ãããåè¨ãã©ã¼ããã¿ã¯ãåè¨è¤æ°ã®ãã¼ã¿é¨åã®ã
ã¡ã®æå®ã®ãã¼ã¿é¨åãç¹å®ããæ¤åºä¿¡å·ã«å¿çãã¦ã
åè¨è¤æ°ã®ãã¼ã¿é¨åã®ããããã¨åè¨ç¬¬ï¼ã¿ã¤ãã³ã°
æ
å ±ã¨ã®ãã¡ã®ä¸æ¹ã鏿ãã鏿åè·¯ãåãã¦ãã¦ã
ãããThe data includes a plurality of data portions, and the formatter is responsive to a detection signal for identifying a predetermined data portion of the plurality of data portions,
A selection circuit may be provided for selecting one of the plurality of data portions and the first timing information.
ãï¼ï¼ï¼ï¼ãåè¨ãã¼ã¿ã¯ãè¤æ°ã®ãã¼ã¿é¨åãå«ãã§
ãããåè¨ãã©ã¼ããã¿ã¯ãè©²è¤æ°ã®ãã¼ã¿é¨åã®ãã¡
ã®ï¼ã¤ã¨è©²è¤æ°ã®ãã¼ã¿é¨åã®ãã¡ã®ä»ã®ï¼ã¤ã¨ãã¢ã
ã¬ã¹çã«ãªã³ã¯ããã¢ãã¬ã¹ãã¤ã³ã¿ãåè¨ãã¼ã¿ã®æ
å®ã®ä½ç½®ã«æ¿å
¥ãã¦ããããThe data includes a plurality of data portions, and the formatter is an address pointer for addressably linking one of the plurality of data portions and another one of the plurality of data portions. May be inserted at a predetermined position in the data.
ãï¼ï¼ï¼ï¼ãåè¨ãã©ã¼ããã¿ã¯ãåè¨è¤æ°ã®ãã¼ã¿é¨
åã®ãã¡ã®æå®ã®ãã¼ã¿é¨åãç¹å®ããæ¤åºä¿¡å·ã«å¿ç
ãã¦ãåè¨è¤æ°ã®ãã¼ã¿é¨åã®ããããã¨åè¨ç¬¬ï¼ã¿ã¤
ãã³ã°æ
å ±ã¨ã®ãã¡ã®ä¸æ¹ã鏿ãã第ï¼é¸æåè·¯ã¨ã
該æ¤åºä¿¡å·ãåãåã£ã¦ãã該æ¤åºä¿¡å·ã«ç¶ãæ¬¡ã®æ¤åº
ä¿¡å·ãåãåãã¾ã§ã«è©²ãã©ã¼ããã¿ãééããåè¨ã
ã¼ã¿ã®éãã«ã¦ã³ãããã«ã¦ã³ã¿ã¨ãè©²æ¬¡ã®æ¤åºä¿¡å·ã«
å¿çãã¦ã該第ï¼é¸æåè·¯ã®åºåã¨è©²ã«ã¦ã³ã¿ã®åºåã¨
ã®ãã¡ã®ä¸æ¹ã鏿ãã第ï¼é¸æåè·¯ã¨ãåãã¦ãã¦ã
ãããThe formatter selects one of each of the plurality of data portions and the first timing information in response to a detection signal identifying a predetermined data portion of the plurality of data portions. A first selection circuit,
A counter that counts the amount of the data that has passed through the formatter from the reception of the detection signal to the reception of the next detection signal following the detection signal, and the first selection circuit in response to the next detection signal. And a second selection circuit for selecting one of the output of the counter and the output of the counter.
ãï¼ï¼ï¼ï¼ãåè¨ãã³ã¼ãè£
ç½®ã¯ãå¶å¾¡ä¿¡å·ã«å¿çã
ã¦ãåè¨ã¢ãã¬ã¹ãã¤ã³ã¿ãåç
§ãããã¨ã«ãããåè¨
è¤æ°ã®ãã¼ã¿é¨åã®å°ãªãã¨ãä¸é¨ãã¹ããããããã
ã«ãåè¨ãã¼ã¿ã®èªã¿åºããå¶å¾¡ããèªã¿åºãå¶å¾¡é¨ã
ããã«åãã¦ãã¦ããããIn response to a control signal, the decoding device includes a read control unit for controlling the read of the data so as to skip at least a part of the plurality of data parts by referring to the address pointer. It may be further equipped.
ãï¼ï¼ï¼ï¼ãåè¨ãã³ã¼ãè£
ç½®ã¯ãå¶å¾¡ä¿¡å·ã«å¿çã
ã¦ãåè¨è¤æ°ã®ãã¼ã¿é¨åã®å°ãªãã¨ãä¸é¨ãç¹°ãè¿ã
èªã¿åºãããã«ãåè¨ãã¼ã¿ã®èªã¿åºããå¶å¾¡ããèªã¿
åºãå¶å¾¡é¨ãããã«åãã¦ãã¦ããããThe decoding device may further include a read control unit for controlling the reading of the data so as to repeatedly read at least a part of the plurality of data portions in response to a control signal.
ãï¼ï¼ï¼ï¼ãåè¨ãã³ã¼ãè£
ç½®ã¯ãåè¨ç¬¬ï¼ã¿ã¤ãã³ã°
æ
å ±ã¨åè¨ç¬¬ï¼ã¿ã¤ãã³ã°æ
å ±ã¨ã®æ¯è¼çµæã«å¿ãã¦ã
åè¨ã¢ãã¬ã¹ãã¤ã³ã¿ãåç
§ãããã¨ã«ãããåè¨è¤æ°
ã®ãã¼ã¿é¨åã®å°ãªãã¨ãä¸é¨ãã¹ãããããããã«ã
åè¨ãã¼ã¿ã®èªã¿åºããå¶å¾¡ããèªã¿åºãå¶å¾¡é¨ããã
ã«åãã¦ãã¦ããããThe decoding device is responsive to a result of comparison between the first timing information and the second timing information.
By skipping at least a portion of the plurality of data portions by referencing the address pointer,
A read control unit that controls reading of the data may be further included.
ãï¼ï¼ï¼ï¼ãåè¨ãã³ã¼ãè£
ç½®ã¯ãåè¨ç¬¬ï¼ã¿ã¤ãã³ã°
æ
å ±ã¨åè¨ç¬¬ï¼ã¿ã¤ãã³ã°æ
å ±ã¨ã®æ¯è¼çµæã«å¿ãã¦ã
åè¨è¤æ°ã®ãã¼ã¿é¨åã®å°ãªãã¨ãä¸é¨ãç¹°ãè¿ãèªã¿
åºãããã«ãåè¨ãã¼ã¿ã®èªã¿åºããå¶å¾¡ããèªã¿åºã
å¶å¾¡é¨ãããã«åãã¦ãã¦ããããThe decoding device is responsive to a result of comparison between the first timing information and the second timing information.
A read control unit that controls reading of the data may be further provided so as to repeatedly read at least a part of the plurality of data portions.
ãï¼ï¼ï¼ï¼ãæ¬çºæã®ãã³ã¼ãæ¹æ³ã¯ããããã¹ããªã¼
ã ããã³ã¼ããããã¨ã«ããããã³ã¼ããããä¿¡å·ãåº
åãããã³ã¼ãæ¹æ³ã§ãã£ã¦ã該ãããã¹ããªã¼ã ãã
ããã¨ãã¼ã¿ã¨ã«åè§£ããã¹ãããã¨ã該ãããããã
該ãã³ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ãè¦å®ãã
第ï¼ã¿ã¤ãã³ã°æ
å ±ãæ½åºããã¹ãããã¨ã該第ï¼ã¿ã¤
ãã³ã°æ
å ±ã該ãã¼ã¿ã®æå®ã®ä½ç½®ã«æ¿å
¥ããã¹ããã
ã¨ã該ãã¼ã¿ããã³ã¼ããããã¨ã«ããã該ãã³ã¼ãã
ããä¿¡å·ãçæããã¹ãããã¨ã該ãã³ã¼ããããä¿¡å·
ãåºåããã¿ã¤ãã³ã°ã®åºæºãè¦å®ãã第ï¼ã¿ã¤ãã³ã°
æ
å ±ã¨è©²ãã¼ã¿ã®æå®ã®ä½ç½®ã«æ¿å
¥ããã該第ï¼ã¿ã¤ã
ã³ã°æ
å ±ã¨ã«åºã¥ãã¦ã該ãã³ã¼ããããä¿¡å·ãåºåã
ãã¿ã¤ãã³ã°ãå¶å¾¡ããã¹ãããã¨ãåãã¦ããããã
ã«ããä¸è¨ç®çãéæããããThe decoding method of the present invention is a decoding method for outputting a decoded signal by decoding a bitstream, the step of decomposing the bitstream into a header and data, and from the header,
Extracting the first timing information that defines the timing for outputting the decoded signal; inserting the first timing information at a predetermined position in the data; and decoding the data by decoding the data. The step of generating a decoded signal, the second timing information defining a timing reference for outputting the decoded signal, and the first timing information inserted at a predetermined position of the data, the decoding Controlling the timing of outputting the output signal, thereby achieving the above object.
ãï¼ï¼ï¼ï¼ã[0015]
ãçºæã®å®æ½ã®å½¢æ
ã以ä¸ãå³é¢ãåç
§ããªããæ¬çºæ
ã®å®æ½ã®å½¢æ
ã説æãããBEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
ãï¼ï¼ï¼ï¼ãï¼å®æ½ã®å½¢æ
ï¼ï¼å³ï¼ã¯ãæ¬çºæã®å®æ½ã®
å½¢æ
ï¼ã®ãã³ã¼ãè£
ç½®ï¼ãDVDåçè£
ç½®ï¼ï¼ï¼ã«é©ç¨
ããä¾ã示ããDVDåçè£
ç½®ï¼ï¼ï¼ã¯ãDVDãã£ã¹
ã¯ï¼ï¼ï¼ã«è¨é²ããããã¼ã¿ãèªã¿åºãããã¯ã¢ããã¦
ãããï¼ï¼ï¼ã¨ãèªã¿åºããããã¼ã¿ã«å¯¾ãã¦åçå¦ç
ãè¡ããã¨ã«ãããã¼ã¿ã¹ããªã¼ã ï¼ï¼ï¼ãçæããç©
çãããã¯ï¼ï¼ï¼ã¨ããã¼ã¿ã¹ããªã¼ã ï¼ï¼ï¼ããã³ã¼
ããããã¨ã«ãã主æ åä¿¡å·ï¼ï¼ï¼ï½ã¨å¯æ åä¿¡å·ï¼ï¼
ï¼ï½ã¨é³å£°ä¿¡å·ï¼ï¼ï¼ï½ã¨ãåºåè£
ç½®ï¼ï¼ï¼ã«åºåãã
è«çãããã¯ï¼ï¼ï¼ã¨ãã¦ã®ãã³ã¼ãè£
ç½®ï¼ã¨ãç©çã
ããã¯ï¼ï¼ï¼ããã³è«çãããã¯ï¼ï¼ï¼ãå¶å¾¡ããä¸å¤®
å¦çè£
ç½®ï¼ï¼£ï¼°ï¼µï¼ï¼ï¼ï¼ã¨ãå«ãã§ããã(First Embodiment) FIG. 1 shows an example in which the decoding device 1 according to the first embodiment of the present invention is applied to a DVD reproducing device 300. The DVD reproducing device 300 includes a pickup unit 320 that reads data recorded on a DVD disc 310, a physical block 330 that generates a data stream 100 by performing a reproducing process on the read data, and a data stream 100. By decoding, the main video signal 200a and the sub video signal 20
0b and the audio signal 200c to the output device 350, the decoding device 1 as the logical block 340, and the central processing unit (CPU) 360 which controls the physical block 330 and the logical block 340 are included.
ãï¼ï¼ï¼ï¼ãããã¯ã¢ããã¦ãããï¼ï¼ï¼ã¯ãæå®ã®æ³¢
é·ãæããã¬ã¼ã¶ãDVDãã£ã¹ã¯ï¼ï¼ï¼ã«ç
§å°ããã¬
ã¼ã¶ã¦ãããï¼ï¼ï¼ãå«ãã§ãããThe pickup unit 320 includes a laser unit 321 for irradiating the DVD disc 310 with a laser having a predetermined wavelength.
ãï¼ï¼ï¼ï¼ãç©çã¦ãããï¼ï¼ï¼ã¯ã誤ã符å·è¨æ£ã¦ã
ããï¼ï¼ï¼ã¨ãµã¼ãã³ã³ããã¼ã«ã¦ãããï¼ï¼ï¼ã¨ãå«
ãã§ãããThe physical unit 330 includes an error code correction unit 331 and a servo control unit 332.
ãï¼ï¼ï¼ï¼ãå
¥åè£
ç½®ï¼ï¼ï¼ããåçåä½éå§å½ä»¤ã¾ã
ã¯åçåä½çµäºå½ä»¤ãCPUï¼ï¼ï¼ã«å
¥åãããã¨ãï¼£
ï¼°ï¼µï¼ï¼ï¼ã¯ãåçåä½ã®éå§ï¼çµäºã示ãå¶å¾¡ä¿¡å·ï¼
ï¼ï¼ããã³ã¼ãè£
ç½®ï¼ã«åºåãããå
¥åè£
ç½®ï¼ï¼ï¼ãã
åçåä½ã¢ã¼ãã示ãå½ä»¤ï¼ä¾ãã°ãé常åçã¢ã¼ãï¼
ï¼åéåçã¢ã¼ãï¼ããªã¼ãºåçã¢ã¼ãï¼ãå
¥åããã
ã¨ãCPUï¼ï¼ï¼ã¯ãåçåä½ã¢ã¼ãã示ãå¶å¾¡ä¿¡å·ï¼
ï¼ï¼ããã³ã¼ãè£
ç½®ï¼ã«åºåããããã³ã¼ãè£
ç½®ï¼ã¯ã
å¶å¾¡ä¿¡å·ï¼ï¼ï¼ããã³ï¼ï¼ï¼ã«å¾ã£ã¦ãã³ã¼ãå¦çãå®
è¡ãããWhen a reproducing operation start command or reproducing operation end command is input from the input device 370 to the CPU 360, C
The PU 360 controls the control signal 3 indicating the start / end of the reproduction operation.
61 is output to the decoding device 1. A command indicating the reproduction operation mode from the input device 370 (for example, the normal reproduction mode /
When the double speed reproduction mode / freeze reproduction mode) is input, the CPU 360 causes the control signal 3 indicating the reproduction operation mode.
62 is output to the decoding device 1. The decoding device 1
Decoding processing is executed according to control signals 361 and 362.
ãï¼ï¼ï¼ï¼ãå³ï¼ã¯ãæ¬çºæã®å®æ½ã®å½¢æ
ï¼ã®ãã³ã¼ã
è£
ç½®ï¼ã®æ§æã示ãããã³ã¼ãè£
ç½®ï¼ã¯ããããã¹ããª
ã¼ã ï¼ï¼ï¼ãåãåãããããã¹ããªã¼ã ï¼ï¼ï¼ã主æ
åãã¼ã¿é¨åã¨å¯æ åãã¼ã¿é¨åã¨é³å£°ãã¼ã¿é¨åã¨ã«
åè§£ãã¦ãããããã®ãã¼ã¿é¨åããã³ã¼ãããããã®
çµæããã³ã¼ãè£
ç½®ï¼ã¯ã主æ åä¿¡å·ï¼ï¼ï¼ï½ã¨å¯æ å
ä¿¡å·ï¼ï¼ï¼ï½ã¨é³å£°ä¿¡å·ï¼ï¼ï¼ï½ã¨ãåºåãããFIG. 2 shows the configuration of the decoding device 1 according to the first embodiment of the present invention. The decoding device 1 receives the bit stream 100, decomposes the bit stream 100 into a main video data portion, a sub video data portion, and an audio data portion, and decodes each data portion. As a result, the decoding device 1 outputs the main video signal 200a, the sub video signal 200b, and the audio signal 200c.
ãï¼ï¼ï¼ï¼ããããã¹ããªã¼ã ï¼ï¼ï¼ã¯ãèç©ã¡ãã£ã¢
ã¾ãã¯æ¾éã¡ãã£ã¢ãããã³ã¼ãè£
ç½®ï¼ã«å
¥åãããã
èç©ã¡ãã£ã¢ã¨ãã¦ã¯ãä¾ãã°ãCDâROï¼ãLDã
ãããªãã¼ãããããæ¾éã¡ãã£ã¢ã¨ãã¦ã¯ãä¾ãã°ã
ãã¬ãã¸ã§ã³æ¾éãè¡ææ¾éããã¼ã¿éä¿¡ããããThe bit stream 100 is input to the decoding device 1 from a storage medium or a broadcast medium.
As the storage medium, for example, CD-ROM, LD,
I have a videotape. As broadcast media, for example,
There are television broadcasting, satellite broadcasting, and data communication.
ãï¼ï¼ï¼ï¼ãå³ï¼ã¯ããã³ã¼ãè£
ç½®ï¼ã«å
¥åããããã
ãã¹ããªã¼ã ï¼ï¼ï¼ã®æ§é ãæ¨¡å¼çã«ç¤ºãããã®ã§ã
ããå³ï¼ã§ã¯ããããã¹ããªã¼ã ï¼ï¼ï¼ã¯ãï¼ï¼°ï¼¥ï¼§ï¼
è¦æ ¼ã«æºæ ãã¦ããããããããã³ã¼ãè£
ç½®ï¼ã«å
¥åã
ãããããã¹ããªã¼ã ï¼ï¼ï¼ã¯ãï¼ï¼°ï¼¥ï¼§ï¼è¦æ ¼ã«æºæ
ãã¦ãããã®ã«ã¯éå®ãããªããå¾è¿°ãããããªããã
ããã³ãã¼ã¿ã¨åæ§ã®æ§æãæãããããã¹ããªã¼ã ã§
ããéããä»»æã®ãããã¹ããªã¼ã ããã³ã¼ãè£
ç½®ï¼ã«
å
¥åããå¾ããFIG. 3 schematically shows the structure of the bit stream 100 input to the decoding device 1. In FIG. 3, the bitstream 100 is MPEG2.
It complies with the standard. However, the bitstream 100 input to the decoding device 1 is not limited to the one conforming to the MPEG2 standard. Any bitstream can be input to the decoding device 1 as long as it is a bitstream having a configuration similar to that of a header and data as described below.
ãï¼ï¼ï¼ï¼ããããã¹ããªã¼ã ï¼ï¼ï¼ã¯ãæç³»åçã«é
ç½®ãããï¼ä»¥ä¸ã®ããã¯ï¼ï¼°ï¼¡ï¼£ï¼«ï¼ï¼ï¼ï¼ããæ§æã
ããããããã®ããã¯ï¼ï¼ï¼ã¯ãããã¯ãããï¼ï¼ï¼ã¨
ï¼ä»¥ä¸ã®ãã±ããï¼ï¼°ï¼¡ï¼£ï¼«ï¼¥ï¼´ï¼ï¼ï¼ï¼ããæ§æãã
ããããããã®ãã±ããï¼ï¼ï¼ã¯ãPESãããï¼ï¼ï¼
ã¨ãã¼ã¿ï¼ï¼ï¼ã¨ããæ§æãããããã¼ã¿ï¼ï¼ï¼ã¯ã主
æ åãã¼ã¿ï¼ï¼ï¼ï½ã坿 åãã¼ã¿ï¼ï¼ï¼ï½ãé³å£°ãã¼
ã¿ï¼ï¼ï¼ï½ã®ãã¡ã®ããããã§ãããThe bit stream 100 is composed of one or more packs (PACK) 110 arranged in time series, and each pack 110 is composed of a pack header 120 and one or more packets (PACKET) 130. Each packet 130 has a PES header 140
And data 150. The data 150 is one of the main video data 150a, the sub video data 150b, and the audio data 150c.
ãï¼ï¼ï¼ï¼ã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã¨ã¯ãæ ç»ããã¬ã
æ¾éãªã©ã®æ åã«å«ã¾ããä¸»ãªæ
å ±ã示ããã¼ã¿ã§ã
ãã坿 åãã¼ã¿ï¼ï¼ï¼ï½ã¨ã¯ã主æ åãã¼ã¿ã®ä»å ç
ãªæ
å ±ã§ãã£ã¦ãä¾ãã°ãåå¹ãã¿ã¤ãã«ãªã©ãããã«
ç¸å½ãããThe main video data 150a is data indicating main information included in a video such as a movie or a television broadcast. The sub video data 150b is additional information of the main video data, and for example, subtitles and titles correspond to this.
ãï¼ï¼ï¼ï¼ãããã¯ãããï¼ï¼ï¼ã¯ãã·ã¹ãã ã¯ããã¯
ãªãã¡ã¬ã³ã¹ï¼ï¼³ï¼£ï¼²ï¼ï¼³ï½ï½ï½ï½
ï½ ï¼£ï½ï½ï½ï½ ï¼²
ï½
ï½ï½
ï½ï½
ï½ï½ï½
ï¼ï¼ï¼ï¼ãå«ãã§ãããSCRï¼ï¼ï¼
ã¯ããã³ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ã®åºæºã
è¦å®ãããããã¯ãããï¼ï¼ï¼ã¯ãSCRï¼ï¼ï¼ã®ä»ã
æå¤§ã®å
¥åã¬ã¼ãã®å®ç¾©ã主æ åãã¼ã¿ã坿 åãã¼ã¿
ããã³é³å£°ãã¼ã¿ã®æå¤§ã®ãããã¡éã®å®ç¾©ãªã©ãå«
ããThe pack header 120 includes a system clock reference (SCR).
Efence) 121 is included. SCR121
Defines the timing reference for outputting the decoded signal. The pack header 120 includes the SCR 121,
It includes the definition of the maximum input rate and the maximum buffer amount of the main video data, sub video data and audio data.
ãï¼ï¼ï¼ï¼ãPESãããï¼ï¼ï¼ã¯ããã¬ã¼ã³ãã¼ã·ã§
ã³ã¿ã¤ã ã¹ã¿ã³ãï¼ï¼°ï¼´ï¼³ï¼ï¼°ï½ï½
ï½ï½
ï½ï½ï½ï½ï½ï½ï½
ï¼´ï½ï½ï½
ï¼³ï½ï½ï½ï½ï¼ï¼ï¼ï¼ãå«ãã§ãããï¼°ï¼´ï¼³
ï¼ï¼ï¼ã¯ããã³ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ã
è¦å®ãããï¼°ï¼´ï¼³ï¼ï¼ï¼ã«ãã£ã¦è¦å®ãããã¿ã¤ãã³ã°
ã¯ãSCRï¼ï¼ï¼ãåºæºã¨ããç¸å¯¾çãªã¿ã¤ãã³ã°ã§ã
ããPESãããï¼ï¼ï¼ã¯ãï¼°ï¼´ï¼³ï¼ï¼ï¼ã®ä»ããã³ã¼
ãã£ã³ã°ã¿ã¤ã ã¹ã¿ã³ãï¼ï¼¤ï¼´ï¼³ï¼ï¼¤ï½
ï½ï½ï½ï½ï½ï½
ï¼´ï½ï½ï½
ï¼³ï½ï½ï½ï½ï¼ãã¨ã¬ã¡ã³ã¿ãªã¼ã¹ããªã¼ã ã¯
ããã¯ãªãã¡ã¬ã³ã¹ï¼ï¼¥ï¼³ï¼£ï¼²ï¼ï¼¥ï½ï½
ï½ï½
ï½ï½ï½ï½ï½
_Sï½ï½ï½
ï½ï½ï¼¿ï¼£ï½ï½ï½ï½ï¼¿ï¼²ï½
ï½ï½
ï½ï½
ï½ï½ï½
ï¼ã
ããªãã¯ãã¬ã¼ã³ã³ããã¼ã«ã®ãã©ã°ãªã©ãå«ããThe PES header 140 includes a presentation time stamp (PTS; Presentation).
Time Stamp) 141 is included. PTS
141 defines the timing of outputting the decoded signal. The timing defined by the PTS 141 is a relative timing based on the SCR 121. The PES header 140 includes a PTS 141 and a decoding time stamp (DTS; Decoding).
Time Stamp) and elementary stream clock reference (ESCR; Elementary)
_Stream_Clock_Reference) and a trick play control flag.
ãï¼ï¼ï¼ï¼ãå³ï¼ï¼ï½ï¼ã¯ãããã¯ãããï¼ï¼ï¼ã®ä¸è¬
çãªã·ã³ã¿ãã¯ã¹ã¨ããã®ã·ã³ã¿ãã¯ã¹ã«å¾ã£ãããã
é
åã®ä¾ã¨ã示ããä¾ãã°ãsystem_clock_reference_b
ase[32:30]ãsystem_clock_reference_base[29:15]ãsy
stem_clock_reference_base[14:0]ã¨ããï¼ã¤ã®é
åã®
çµåã«å¯¾å¿ãããããé
åãSCRï¼ï¼ï¼ã«ç¸å½ããã
ãã®ä¾ã§ã¯ãSCRï¼ï¼ï¼ã¯ãï¼ï¼ãããã®ãã¼ã¿ã§ã
ããFIG. 4A shows a general syntax of the pack header 120 and an example of a bit array according to the syntax. For example, system_clock_reference_b
ase [32:30], system_clock_reference_base [29:15], sy
A bit array corresponding to a combination of three arrays called stem_clock_reference_base [14: 0] corresponds to the SCR 121.
In this example, the SCR 121 is 33-bit data.
ãï¼ï¼ï¼ï¼ãå³ï¼ï¼ï½ï¼ã¯ãPESãããï¼ï¼ï¼ã®ä¸è¬
çãªã·ã³ã¿ãã¯ã¹ã¨ããã®ã·ã³ã¿ãã¯ã¹ã«å¾ã£ãããã
é
åã®ä¾ã¨ã示ããä¾ãã°ãPTS[32:30]ãPTS[29:15]ã
PTS[14:0]ã¨ããï¼ã¤ã®é
åã®çµåã«å¯¾å¿ãããããé
åãï¼°ï¼´ï¼³ï¼ï¼ï¼ã«ç¸å½ããããã®ä¾ã§ã¯ãï¼°ï¼´ï¼³ï¼ï¼
ï¼ã¯ãï¼ï¼ãããã®ãã¼ã¿ã§ãããFIG. 4B shows a general syntax of the PES header 140 and an example of a bit array according to the syntax. For example, PTS [32:30], PTS [29:15],
A bit array corresponding to the combination of three arrays PTS [14: 0] corresponds to PTS141. In this example, PTS14
1 is 33-bit data.
ãï¼ï¼ï¼ï¼ãå³ï¼ãåã³åç
§ãã¦ããã³ã¼ãè£
ç½®ï¼ã¯ã
ãããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¨ãããã¡ã¡ã¢ãªï¼ï¼ã¨èª
ã¿åºãå¶å¾¡é¨ï¼ï¼ãå«ãã³ã³ããã¼ã©ï¼ï¼ã¨ã¨ã¬ã¡ã³ã¿
ãªãã³ã¼ãé¨ï¼ï¼ã¨ãå«ãã§ãããReferring again to FIG. 2, the decoding device 1
It includes a bit stream decomposer 10, a buffer memory 20, a controller 30 including a read control unit 33, and an elementary decoder unit 40.
ãï¼ï¼ï¼ï¼ãåçåä½ã®éå§ï¼çµäºã示ãå¶å¾¡ä¿¡å·ï¼ï¼
ï¼ã¯ãå
¥åé¨ï¼ï¼ãä»ãã¦ãããã¹ããªã¼ã åè§£å¨ï¼ï¼
ã¨èªã¿åºãå¶å¾¡é¨ï¼ï¼ã¨ã«å
¥åããããA control signal 36 indicating the start / end of the reproducing operation.
1 is the bitstream decomposer 10 via the input unit 50.
And the read control unit 33.
ãï¼ï¼ï¼ï¼ããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ããããã¹
ããªã¼ã ï¼ï¼ï¼ã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã¨å¯æ åãã¼ã¿
ï¼ï¼ï¼ï½ã¨é³å£°ãã¼ã¿ï¼ï¼ï¼ï½ã¨ã«åè§£ããããããã¹
ããªã¼ã åè§£å¨ï¼ï¼ã¯ãPESãããï¼ï¼ï¼ããï¼°ï¼´ï¼³
ï¼ï¼ï¼ãæ½åºãããã®ï¼°ï¼¥ï¼³ãããï¼ï¼ï¼ã«ç¶ãï¼ä»¥ä¸
ã®ãã¼ã¿ï¼ï¼ï¼ï¼ä¸»æ åãã¼ã¿ï¼ï¼ï¼ï½ã¾ãã¯å¯æ åã
ã¼ã¿ï¼ï¼ï¼ï½ã¾ãã¯é³å£°ãã¼ã¿ï¼ï¼ï¼ï½ï¼ã®æå®ã®ä½ç½®
ã«ï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ¿å
¥ãããThe bit stream decomposer 10 decomposes the bit stream 100 into main video data 150a, sub video data 150b and audio data 150c. The bitstream decomposer 10 uses the PES header 140 to PTS
141 is extracted, and the PTS 141 is inserted at a predetermined position of one or more data 150 (main video data 150a, sub video data 150b, or audio data 150c) following the PES header 140.
ãï¼ï¼ï¼ï¼ããããã¡ã¡ã¢ãªï¼ï¼ã¯ã主æ åãã¼ã¿ãæ ¼
ç´ããããã®ä¸»æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã¨ã坿 åãã¼
ã¿ãæ ¼ç´ããããã®å¯æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã¨ãé³å£°
ãã¼ã¿ãæ ¼ç´ããããã®é³å£°ãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã¨ãæ
ãã¦ãããThe buffer memory 20 includes a main video data storage unit 20a for storing main video data, a sub video data storage unit 20b for storing sub video data, and an audio data storage for storing audio data. And a portion 20c.
ãï¼ï¼ï¼ï¼ããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ãï¼°ï¼´ï¼³ï¼
ï¼ï¼ãæ¿å
¥ãã主æ åãã¼ã¿ã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã¨
ãã¦ãããã¡ã¡ã¢ãªï¼ï¼ã®ä¸»æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã«
æ ¼ç´ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ¿å
¥ãã坿 åãã¼ã¿ã坿 å
ãã¼ã¿ï¼ï¼ï¼ï½ã¨ãã¦ãããã¡ã¡ã¢ãªï¼ï¼ã®å¯æ åãã¼
ã¿æ ¼ç´é¨ï¼ï¼ï½ã«æ ¼ç´ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ¿å
¥ããé³å£°
ãã¼ã¿ãé³å£°ãã¼ã¿ï¼ï¼ï¼ï½ã¨ãã¦ãããã¡ã¡ã¢ãªï¼ï¼
ã®é³å£°ãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã«æ ¼ç´ããã主æ åãã¼ã¿ï¼
ï¼ï¼ï½ãæ ¼ç´ãããã¹ã主æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½å
ã®
ã¢ãã¬ã¹ã¯ãã¢ãã¬ã¹ä¿¡å·ï¼ï¼ï¼ï½ã«ãã£ã¦æå®ãã
ãã坿 åãã¼ã¿ï¼ï¼ï¼ï½ãæ ¼ç´ãããã¹ã坿 åãã¼
ã¿æ ¼ç´é¨ï¼ï¼ï½å
ã®ã¢ãã¬ã¹ã¯ãã¢ãã¬ã¹ä¿¡å·ï¼ï¼ï¼ï½
ã«ãã£ã¦æå®ããããé³å£°ãã¼ã¿ï¼ï¼ï¼ï½ãæ ¼ç´ããã
ã¹ãé³å£°ãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½å
ã®ã¢ãã¬ã¹ã¯ãã¢ãã¬ã¹
ä¿¡å·ï¼ï¼ï¼ï½ã«ãã£ã¦æå®ããããã¢ãã¬ã¹ä¿¡å·ï¼ï¼ï¼
ï½ãï¼ï¼ï¼ï½ããã³ï¼ï¼ï¼ï½ã¯ããããã¹ããªã¼ã åè§£
å¨ï¼ï¼ã«ãã£ã¦çæããããThe bit stream decomposer 10 uses the PTS1
The main video data into which 41 is inserted is stored as main video data 160a in the main video data storage unit 20a of the buffer memory 20, and the sub video data into which the PTS 141 is inserted is stored as sub video data 160b in the sub video data storage unit 20b of the buffer memory 20. Audio data in which the PTS 141 is inserted in the buffer memory 20 as audio data 160c.
It is stored in the voice data storage unit 20c. Main video data 1
The address in the main video data storage unit 20a in which 60a is to be stored is designated by the address signal 180a. The address in the sub-picture data storage unit 20b in which the sub-picture data 160b should be stored is the address signal 180b.
Specified by The address in the voice data storage section 20c in which the voice data 160c should be stored is designated by the address signal 180c. Address signal 180
a, 180b and 180c are generated by the bitstream decomposer 10.
ãï¼ï¼ï¼ï¼ãå³ï¼ã¯ããããã¡ã¡ã¢ãªï¼ï¼ã®ä¸»æ åãã¼
ã¿æ ¼ç´é¨ï¼ï¼ï½ã«æ ¼ç´ããã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã®æ§
é ã示ãã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã¯ãï¼ä»¥ä¸ã®ã¢ã¯ã»ã¹
ã¦ãããï¼ï¼ï¼ï½ãå«ãã§ãããã¢ã¯ã»ã¹ã¦ãããï¼ï¼
ï¼ï½ã¯ãï¼ãã£ã¼ã«ãã§ãã£ã¦ãããããï¼ãã¬ã¼ã ã§
ãã£ã¦ããããFIG. 5 shows the structure of the main video data 160a stored in the main video data storage section 20a of the buffer memory 20. The main video data 160a includes one or more access units 161a. Access unit 16
1a may be one field or one frame.
ãï¼ï¼ï¼ï¼ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã¯ããã¯ãã£ã¹
ã¿ã¼ãã³ã¼ãï¼ï¼°ï¼³ï¼£ï¼ï¼°ï½ï½ï½ï½ï½ï½
ï¼³ï½ï½ï½ï½
ï¼£ï½ï½ï½
ï¼ï¼ï¼ï¼ï½ãå«ããPSCï¼ï¼ï¼ï½ã¯ãã¢ã¯ã»
ã¹ã¦ãããï¼ï¼ï¼ï½ã®å
é ããï¼ã¯ã¼ãç®ã«æ ¼ç´ãã
ããã¾ãããã®ä¾ã§ã¯ãï¼°ï¼´ï¼³ï¼ï¼ï¼ã¯ãã¢ã¯ã»ã¹ã¦ã
ããï¼ï¼ï¼ï½ã®å
é ããï¼ã¯ã¼ãç®ã«æ¿å
¥ããã¦ããã
ãã¡ãããï¼°ï¼´ï¼³ï¼ï¼ï¼ã®æ¿å
¥ä½ç½®ãã¢ã¯ã»ã¹ã¦ããã
ï¼ï¼ï¼ï½ã®å
é ããï¼ã¯ã¼ãç®ã«éå®ãããããã§ã¯ãª
ããåã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã«å
±éã®ã«ã¼ã«ã«å¾ã£
ã¦æ¿å
¥ãããéããï¼°ï¼´ï¼³ï¼ï¼ï¼ã¯ãã¢ã¯ã»ã¹ã¦ããã
ï¼ï¼ï¼ï½ã®ä»»æã®ä½ç½®ã«æ¿å
¥ããå¾ããThe access unit 161a uses a picture start code (PSC; Picture Start).
Code) 162a. The PSC 162a is stored in the first word from the head of the access unit 161a. Further, in this example, the PTS 141 is inserted in the second word from the head of the access unit 161a.
Of course, the insertion position of the PTS 141 is not limited to the second word from the beginning of the access unit 161a. The PTS 141 can be inserted at any position of the access unit 161a as long as it is inserted according to the rule common to each access unit 161a.
ãï¼ï¼ï¼ï¼ããªãã坿 åãã¼ã¿ï¼ï¼ï¼ï½ããã³é³å£°ã
ã¼ã¿ï¼ï¼ï¼ï½ã®æ§é ãã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã®æ§é ã¨
åæ§ã§ããã坿 åãã¼ã¿ï¼ï¼ï¼ï½ã¯ãï¼ä»¥ä¸ã®ã¢ã¯ã»
ã¹ã¦ãããï¼ï¼ï¼ï½ãå«ããã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½
ã¯ãï¼ãã£ã¼ã«ãã§ãã£ã¦ãããããï¼ãã¬ã¼ã ã§ãã£
ã¦ããããé³å£°ãã¼ã¿ï¼ï¼ï¼ï½ã¯ãï¼ä»¥ä¸ã®ã¢ã¯ã»ã¹ã¦
ãããï¼ï¼ï¼ï½ãå«ããã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã¯ã
ï¼ã¤ï¼ã¤åç¬ã§ãªã¼ãã£ãªä¿¡å·ã«å¾©å·ã§ããæå°åä½ã§
ãããä¾ãã°ãï¼ï¼°ï¼¥ï¼§ï¼ã®ã¬ã¼ã¤ï¼ã®å ´åã¯ãã¢ã¯ã»
ã¹ã¦ãããï¼ï¼ï¼ï½ã¯ãï¼ï¼ï¼ãµã³ãã«ãå«ããThe structures of the sub-picture data 160b and the audio data 160c are the same as that of the main picture data 160a. The sub-picture data 160b includes one or more access units 161b. Access unit 161b
May be one field or one frame. The voice data 160c includes one or more access units 161c. The access unit 161c is
It is the minimum unit that can be individually decoded into audio signals. For example, in the case of layer 1 of MPEG1, access unit 161c contains 384 samples.
ãï¼ï¼ï¼ï¼ããããã¹ããªã¼ã ï¼ï¼ï¼ã«å«ã¾ããããã¯
ãããï¼ï¼ï¼ããã³ï¼°ï¼¥ï¼³ãããï¼ï¼ï¼ã¯ãããããã
ãããã¡ã¡ã¢ãªï¼ï¼ã«ã¯æ ¼ç´ãããªãããã®ä»£ããã«ã
ãããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ãããã¯ãããï¼ï¼ï¼ã
ãSCRï¼ï¼ï¼ãæ½åºããæ½åºãããSCRï¼ï¼ï¼ãã³
ã³ããã¼ã©ï¼ï¼ã«éããã¾ããä¸è¿°ããããã«ãããã
ã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ãPESãããï¼ï¼ï¼ããï¼°ï¼´
ï¼³ï¼ï¼ï¼ãæ½åºãããã®ï¼°ï¼¥ï¼³ãããï¼ï¼ï¼ã«ç¶ãï¼ä»¥
ä¸ã®ãã¼ã¿ï¼ï¼ï¼ã®æå®ã®ä½ç½®ã«ï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ¿å
¥ã
ããThe pack header 120 and the PES header 140 included in the bit stream 100 are both
It is not stored in the buffer memory 20. Instead,
The bitstream decomposer 10 extracts the SCR 121 from the pack header 120 and sends the extracted SCR 121 to the controller 30. In addition, as described above, the bitstream decomposer 10 detects the PT from the PES header 140.
S141 is extracted, and PTS141 is inserted in the predetermined position of the one or more data 150 following the PES header 140.
ãï¼ï¼ï¼ï¼ããã®ããã«ããã³ã¼ããããä¿¡å·ãåºåã
ãã¿ã¤ãã³ã°ãè¦å®ããï¼°ï¼´ï¼³ï¼ï¼ï¼ã¯ããã¼ã¿ï¼ï¼ï¼
ã®æå®ã®ä½ç½®ã«ç´æ¥çã«æ¿å
¥ããããããã«ããããã³
ã¼ãè£
ç½®ï¼ã¯ãCPUï¼ï¼ï¼ã®å©ããåãããã¨ãªãã
ãã³ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ã®åæåãã
ãå®è¡ãããã¨ãã§ãããCPUï¼ï¼ï¼ãããã¯ããã
ï¼ï¼ï¼ã¨ï¼°ï¼¥ï¼³ãããï¼ï¼ï¼ã¨ãè§£æãããã®è§£æçµæ
ã®å¯¾å¿é¢ä¿ãç¶æããå¿
è¦ããªããããã«ãããCPU
ï¼ï¼ï¼ã¨ãã³ã¼ãè£
ç½®ï¼ã¨ã®éã®å¶å¾¡ãç°¡åã¨ãªããï¼£
ï¼°ï¼µï¼ï¼ï¼ã®è² è·ãå°ãããªããAs described above, the PTS 141 defining the timing of outputting the decoded signal is the data 150.
Is directly inserted into the predetermined position. As a result, the decoding device 1 can operate without the help of the CPU 360.
It is possible to perform synchronization of the timing of outputting the decoded signal. It is not necessary for the CPU 360 to analyze the pack header 120 and the PES header 140 and maintain the correspondence relationship of the analysis results. This allows the CPU
Control between the 360 and the decoding device 1 is simplified, and C
The load on the PU 360 is also reduced.
ãï¼ï¼ï¼ï¼ãã¾ãããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ãã
ã³ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ã®åºæºãè¦å®ã
ãSCRï¼ï¼ï¼ãããã¯ãããï¼ï¼ï¼ããæ½åºãããã³
ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ãè¦å®ããï¼°ï¼´ï¼³
ï¼ï¼ï¼ãPESãããï¼ï¼ï¼ããæ½åºãããããã«ã
ãããããã®ãããããããã¡ã¡ã¢ãªï¼ï¼ã«æ ¼ç´ããã
ã¨ãçããããã«ããããããã¡ã¡ã¢ãªï¼ï¼ã«æ ¼ç´ãã
ããã¼ã¿éã忏ãããã¨ãã§ããããã®çµæãããã
ã¡ã¡ã¢ãªï¼ï¼ã®ãµã¤ãºãå°ãããããã¨ãã§ãããThe bit stream decomposer 10 also extracts from the pack header 120 the SCR 121 that defines the reference for the timing of outputting the decoded signal, and the PTS that defines the timing of outputting the decoded signal.
141 is extracted from the PES header 140. This saves storing those headers in the buffer memory 20. As a result, the amount of data stored in the buffer memory 20 can be reduced. As a result, the size of the buffer memory 20 can be reduced.
ãï¼ï¼ï¼ï¼ãå³ï¼ãåã³åç
§ãã¦ããã³ã¼ãè£
ç½®ï¼ã®æ§
æã説æãããReferring again to FIG. 2, the structure of the decoding device 1 will be described.
ãï¼ï¼ï¼ï¼ãã³ã³ããã¼ã©ï¼ï¼ã¯ãSCRâï¼°ï¼´ï¼³æ¯è¼
é¨ï¼ï¼ã¨ãèªã¿åºãå¶å¾¡é¨ï¼ï¼ã¨ãåºåå¶å¾¡é¨ï¼ï¼ã¨ã
æãã¦ãããThe controller 30 has an SCR-PTS comparison unit 31, a read control unit 33, and an output control unit 34.
ãï¼ï¼ï¼ï¼ãSCRâï¼°ï¼´ï¼³æ¯è¼é¨ï¼ï¼ã¯ããããã¹ã
ãªã¼ã åè§£å¨ï¼ï¼ããSCRï¼ï¼ï¼ãåãåããå¾è¿°ã
ãããã«èªã¿åºãå¶å¾¡é¨ï¼ï¼ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãåãå
ããSCRâï¼°ï¼´ï¼³æ¯è¼é¨ï¼ï¼ã¯ãSCRï¼ï¼ï¼ã®å¤ã¨
ï¼°ï¼´ï¼³ï¼ï¼ï¼ã®å¤ã¨ã«åºã¥ãã¦ããã³ã¼ããããä¿¡å·ã
åºåããã¿ã¤ãã³ã°ãè¦å®ããåºåå¶å¾¡ä¿¡å·ãåºåå¶å¾¡
é¨ï¼ï¼ã«ä¾çµ¦ãããThe SCR-PTS comparison unit 31 receives the SCR 121 from the bitstream decomposer 10 and the PTS 141 from the read control unit 33 as described later. The SCR-PTS comparison unit 31 supplies the output control unit 34 with an output control signal that defines the timing of outputting the decoded signal based on the value of the SCR 121 and the value of the PTS 141.
ãï¼ï¼ï¼ï¼ãSCRâï¼°ï¼´ï¼³æ¯è¼é¨ï¼ï¼ã¯ãSCRã«ã¦
ã³ã¿ï¼ï¼ã¨ãæ¯è¼å¨ï¼ï¼ï½ãï¼ï¼ï½ã¨ãæãã¦ãããã
ããã¹ããªã¼ã åè§£å¨ï¼ï¼ã«ãã£ã¦æ½åºãããSCRï¼
ï¼ï¼ã¯ãSCRã«ã¦ã³ã¿ï¼ï¼ã«å
¥åããããSCRã«ã¦
ã³ã¿ï¼ï¼ã¯ãå
¥åãããSCRï¼ï¼ï¼ãåæå¤ã¨ãã¦ã»
ãããããã®åæå¤ãï¼ï¼ï½ï¼¨ï½ã®å¨æ³¢æ°ã§ã«ã¦ã³ãã¢
ãããããã«ã¦ã³ãã¢ãããããå¤ããæ¯è¼å¨ï¼ï¼ï½ã
ï¼ï¼ï½ã«ããããå
¥åããããã¾ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãã
æ¯è¼å¨ï¼ï¼ï½ãï¼ï¼ï½ã«ããããå
¥åããããï¼°ï¼´ï¼³ï¼
ï¼ï¼ã¯ãå¾è¿°ããããã«ãèªã¿åºãå¶å¾¡é¨ï¼ï¼ã«ãã£ã¦
èªã¿åºãããã¢ã¯ã»ã¹ã¦ãããããæ½åºããããã¨ã«ã
ã£ã¦å¾ããããThe SCR-PTS comparison unit 31 has an SCR counter 32 and comparators 31a to 31c. SCR1 extracted by bitstream decomposer 10
21 is input to the SCR counter 32. The SCR counter 32 sets the input SCR 121 as an initial value and counts up the initial value at a frequency of 90 kHz. The counted up value is the comparator 31a ...
31c is input respectively. In addition, PTS141
It is input to each of the comparators 31a to 31c. PTS1
41 is obtained by being extracted from the access unit read by the read control unit 33, as will be described later.
ãï¼ï¼ï¼ï¼ãæ¯è¼å¨ï¼ï¼ï½ã¯ãSCRã«ã¦ã³ã¿ï¼ï¼ã®åº
åã¨ï¼°ï¼´ï¼³ï¼ï¼ï¼ã¨ãæ¯è¼ãããã®æ¯è¼çµæã示ãä¿¡å·
ãåºåå¶å¾¡ä¿¡å·ã¨ãã¦åºåå¶å¾¡å¨ï¼ï¼ï½ã«ä¾çµ¦ãããä¾
ãã°ãSCRã«ã¦ã³ã¿ï¼ï¼ã«ãã£ã¦ã«ã¦ã³ãã¢ãããã
ãå¤ãï¼°ï¼´ï¼³ï¼ï¼ï¼ã®å¤ããå°ããå ´åã«ã¯ãæ¯è¼å¨ï¼
ï¼ï½ã¯ããã¼ã¬ãã«ã®åºåå¶å¾¡ä¿¡å·ãåºåå¶å¾¡å¨ï¼ï¼ï½
ã«ä¾çµ¦ããããã以å¤ã®å ´åã«ã¯ãæ¯è¼å¨ï¼ï¼ï½ã¯ãã
ã¤ã¬ãã«ã®åºåå¶å¾¡ä¿¡å·ãåºåå¶å¾¡å¨ï¼ï¼ï½ã«ä¾çµ¦ã
ããThe comparator 31a compares the output of the SCR counter 32 with the PTS 141 and supplies a signal indicating the comparison result to the output controller 34a as an output control signal. For example, when the value counted up by the SCR counter 32 is smaller than the value of the PTS 141, the comparator 3
1a outputs a low level output control signal to the output controller 34a.
To supply. In other cases, the comparator 31a supplies a high level output control signal to the output controller 34a.
ãï¼ï¼ï¼ï¼ãåºåå¶å¾¡å¨ï¼ï¼ï½ã¯ãåºåå¶å¾¡ä¿¡å·ããã¤
ã¬ãã«ã®å ´åã«ã主æ åãã¼ã¿ãã³ã¼ãï¼ï¼ï½ã®åºåã
許å¯ããåºåå¶å¾¡ä¿¡å·ããã¼ã¬ãã«ã®å ´åã«ã主æ åã
ã¼ã¿ãã³ã¼ãï¼ï¼ï½ã®åºåãç¦æ¢ãããThe output controller 34a permits the output of the main video data decoder 40a when the output control signal is at the high level, and inhibits the output of the main video data decoder 40a when the output control signal is at the low level. .
ãï¼ï¼ï¼ï¼ãæ¯è¼å¨ï¼ï¼ï½ããã³æ¯è¼å¨ï¼ï¼ï½ã®æ©è½
ã¯ãæ¯è¼å¨ï¼ï¼ï½ã®æ©è½ã¨åæ§ã§ãããåºåå¶å¾¡å¨ï¼ï¼
ï½ã¨å
±ã«åºåå¶å¾¡é¨ï¼ï¼ã«å«ã¾ããåºåå¶å¾¡å¨ï¼ï¼ï½ã
ãã³åºåå¶å¾¡å¨ï¼ï¼ï½ã®æ©è½ã¯ãåºåå¶å¾¡å¨ï¼ï¼ï½ã®æ©
è½ã¨åæ§ã§ãããå¾ã£ã¦ãããã§ã¯ãããã®èª¬æãçç¥
ãããThe functions of the comparator 31b and the comparator 31c are similar to those of the comparator 31a, and the output controller 34
The functions of the output controller 34b and the output controller 34c included in the output control unit 34 together with a are the same as the functions of the output controller 34a. Therefore, their description is omitted here.
ãï¼ï¼ï¼ï¼ããã®ããã«ãã¦ãSCRã«ã¦ã³ã¿ï¼ï¼ã«ã
ã£ã¦ã«ã¦ã³ãã¢ãããããå¤ã¨ï¼°ï¼´ï¼³ï¼ï¼ï¼ã®å¤ã¨ã®å¤§
å°é¢ä¿ã«å¿ãã¦ãã¨ã¬ã¡ã³ã¿ãªãã³ã¼ãé¨ï¼ï¼ã®åºåã¿
ã¤ãã³ã°ãå¶å¾¡ããããããã«ãããã¨ã¬ã¡ã³ã¿ãªãã³
ã¼ãé¨ï¼ï¼ã«ãã£ã¦ãã³ã¼ããããä¿¡å·ã®åæåããã
è¡ããã¨ãå¯è½ã¨ãªããIn this way, the output timing of the elementary decoder section 40 is controlled according to the magnitude relationship between the value counted up by the SCR counter 32 and the value of the PTS 141. As a result, the signals decoded by the elementary decoder section 40 can be synchronized.
ãï¼ï¼ï¼ï¼ãèªã¿åºãå¶å¾¡é¨ï¼ï¼ã¯ãèªã¿åºãå¶å¾¡å¨ï¼
ï¼ï½ãï¼ï¼ï½ãå«ãã§ãããThe read control unit 33 includes a read controller 3
3a to 33c are included.
ãï¼ï¼ï¼ï¼ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ã主æ åãã¼ã¿æ ¼
ç´é¨ï¼ï¼ï½ã«æ ¼ç´ããã主æ åãã¼ã¿ï¼ï¼ï¼ï½ãã¢ã¯ã»
ã¹ã¦ãããï¼ï¼ï¼ï½ãï¼åä½ã¨ãã¦èªã¿åºããèªã¿åºã
ããã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ããPSCï¼ï¼ï¼ï½ã¨ï¼°
ï¼´ï¼³ï¼ï¼ï¼ã¨ãé¤ãããã¼ã¿ã主æ åãã¼ã¿ãã³ã¼ãï¼
ï¼ï½ã«ä¾çµ¦ãããã¾ããèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãã¢ã¯
ã»ã¹ã¦ãããï¼ï¼ï¼ï½ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ½åºããæ½åº
ãããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ¯è¼å¨ï¼ï¼ï½ã«ä¾çµ¦ãããThe read controller 33a reads the main video data 160a stored in the main video data storage section 20a with the access unit 161a as one unit, and the read access units 161a to PSC162a and PSC 162a.
The data excluding TS141 is the main video data decoder 4
0a. The read controller 33a also extracts the PTS 141 from the access unit 161a and supplies the extracted PTS 141 to the comparator 31a.
ãï¼ï¼ï¼ï¼ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ããã³èªã¿åºãå¶å¾¡
å¨ï¼ï¼ï½ã®æ©è½ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã®æ©è½ã¨åæ§
ã§ãããå¾ã£ã¦ãããã§ã¯ãã®èª¬æãçç¥ãããThe functions of the read controller 33b and the read controller 33c are similar to those of the read controller 33a. Therefore, the description is omitted here.
ãï¼ï¼ï¼ï¼ãåºåå¶å¾¡é¨ï¼ï¼ã¯ãåºåå¶å¾¡å¨ï¼ï¼ï½ãï¼
ï¼ï½ãå«ãã§ãããåºåå¶å¾¡å¨ï¼ï¼ï½ãï¼ï¼ï½ã®æ©è½
ã¯ãä¸è¿°ããã¨ããã§ãããThe output control unit 34 includes the output controllers 34a-3a.
4c. The functions of the output controllers 34a to 34c are as described above.
ãï¼ï¼ï¼ï¼ãã¨ã¬ã¡ã³ã¿ãªãã³ã¼ãé¨ï¼ï¼ã¯ã主æ åã
ã¼ã¿ãã³ã¼ãï¼ï¼ï½ã¨ã坿 åãã¼ã¿ãã³ã¼ãï¼ï¼ï½
ã¨ãé³å£°ãã¼ã¿ãã³ã¼ãï¼ï¼ï½ã¨ãå«ãã§ãããThe elementary decoder section 40 includes a main video data decoder 40a and a sub video data decoder 40b.
And an audio data decoder 40c.
ãï¼ï¼ï¼ï¼ã主æ åãã¼ã¿ãã³ã¼ãï¼ï¼ï½ã坿 åãã¼
ã¿ãã³ã¼ãï¼ï¼ï½ããã³é³å£°ãã¼ã¿ãã³ã¼ãï¼ï¼ï½ã®ã
ãããã¯ãèªã¿åºãå¶å¾¡é¨ï¼ï¼ã«ãã£ã¦èªã¿åºãããã
ã¼ã¿ãæå®ã®ã«ã¼ã«ã«å¾ã£ã¦ãã³ã¼ããããã©ã®ãããª
ã«ã¼ã«ãæ¡ç¨ãããã¯è¦æ ¼ã§å®ããããããããã¡ã¡ã¢
ãªï¼ï¼ã«æ ¼ç´ããããã¼ã¿ãå§ç¸®ããã¦ããå ´åã«ã¯ã
ã¨ã¬ã¡ã³ã¿ãªãã³ã¼ãé¨ï¼ï¼ã¯ããã®å§ç¸®ããããã¼ã¿
ã伸張ããããã³ã¼ããããä¿¡å·ã¯ãåºåå¶å¾¡é¨ï¼ï¼ã
ä»ãã¦åºåããããEach of the main video data decoder 40a, the sub video data decoder 40b and the audio data decoder 40c decodes the data read by the read control unit 33 according to a predetermined rule. The rules determine what kind of rules are adopted. If the data stored in the buffer memory 20 is compressed,
The elementary decoder unit 40 expands the compressed data. The decoded signal is output via the output control unit 34.
ãï¼ï¼ï¼ï¼ãå³ï¼ã¯ããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã®æ§
æã示ãããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ãã¹ã¿ã¼ãã³
ã¼ãæ¤åºå¨ï¼ï¼ã¨ãåè§£å¨ï¼ï¼ã¨ãSCRæ½åºå¨ï¼ï¼
ã¨ãï¼°ï¼´ï¼³æ½åºå¨ï¼ï¼ã¨ããã©ã¼ããã¿ï¼ï¼ã¨ãå«ãã§
ãããFIG. 6 shows the configuration of the bitstream decomposer 10. The bit stream decomposer 10 includes a start code detector 51, a decomposer 52, and an SCR extractor 53.
And a PTS extractor 54 and a formatter 55.
ãï¼ï¼ï¼ï¼ãã¹ã¿ã¼ãã³ã¼ãæ¤åºå¨ï¼ï¼ã¯ãã¹ã¿ã¼ãã³
ã¼ããæ¤åºãããã¹ã¿ã¼ãã³ã¼ãã¯ãããã¯ãããï¼ï¼
ï¼ã®å
é ãPESãããï¼ï¼ï¼ã®å
é ããã³ã¢ã¯ã»ã¹ã¦
ãããï¼ï¼ï¼ï½ã®å
é ã«æ¿å
¥ããã¦ããã³ã¼ãã§ããã
ä¾ãã°ãã¹ã¿ã¼ãã³ã¼ãã¯ãï¼ï¼ãããã®ãããå"000
0 0000 0000 0000 0000 0001"ã§ãããå
¥åããããã
ãã¹ããªã¼ã ï¼ï¼ï¼ã®ä¸ã«ã¹ã¿ã¼ãã³ã¼ããç¾ããå ´
åãã¹ã¿ã¼ãã³ã¼ãæ¤åºå¨ï¼ï¼ã¯ãã¹ã¿ã¼ãã³ã¼ãæ¤åº
ä¿¡å·ãåè§£å¨ï¼ï¼ã«åºåãããThe start code detector 51 detects a start code. Start code is pack header 12
It is a code inserted at the beginning of 0, the beginning of the PES header 140, and the beginning of the access unit 151a.
For example, the start code is a 24-bit bit string "000
0 0000 0000 0000 0000 0001 ". When a start code appears in the input bitstream 100, the start code detector 51 outputs a start code detection signal to the decomposer 52.
ãï¼ï¼ï¼ï¼ãåè§£å¨ï¼ï¼ã¯ãã¹ã¿ã¼ãã³ã¼ãã«ç¶ãæå®
ã®æ°ã®ãããï¼ä¾ãã°ãï¼ãããï¼ã®ãã¼ã¿ãèªã¿å
ãããã®ãã¼ã¿ãæå®ã®ãããåã«ä¸è´ãããå¦ããå¤
å®ãããThe decomposer 52 reads data of a predetermined number of bits (for example, 8 bits) following the start code, and determines whether the data matches a predetermined bit string.
ãï¼ï¼ï¼ï¼ãã¹ã¿ã¼ãã³ã¼ãã«ç¶ãï¼ãããã"1011 10
10"ã§ããå ´åã«ã¯ãåè§£å¨ï¼ï¼ã¯ããã®ãã¼ã¿ããã
ã¯ãããï¼ï¼ï¼ã§ããã¨å¤å®ãããããã¹ããªã¼ã ï¼ï¼
ï¼ããããã¯ãããï¼ï¼ï¼ãæ½åºããããã®ããã«ãã¦
æ½åºãããããã¯ãããï¼ï¼ï¼ã¯ãSCRæ½åºå¨ï¼ï¼ã«
ä¾çµ¦ããããSCRæ½åºå¨ï¼ï¼ã¯ãããã¯ãããï¼ï¼ï¼
ããSCRï¼ï¼ï¼ãæ½åºããããã®ãããªæ½åºã¯ãä¾ã
ã°ãå³ï¼ï¼ï½ï¼ã«ç¤ºãã·ã³ã¿ãã¯ã¹ã«å¾ã£ã¦è¡ããããThe 8 bits following the start code are "1011 10
If it is 10 â³, the decomposer 52 determines that the data is the pack header 120, and the bitstream 10
The pack header 120 is extracted from 0. The pack header 120 extracted in this way is supplied to the SCR extractor 53. The SCR extractor 53 has a pack header 120.
SCR121 is extracted from. Such extraction is performed, for example, according to the syntax shown in FIG.
ãï¼ï¼ï¼ï¼ãã¹ã¿ã¼ãã³ã¼ãã«ç¶ãï¼ãããã"1100 XX
XX"ã§ããå ´åã«ã¯ãåè§£å¨ï¼ï¼ã¯ããã®ãã¼ã¿ã主æ
åãã¼ã¿ï¼ï¼ï¼ï½ã«å¯¾å¿ããPESãããï¼ï¼ï¼ã§ãã
ã¨å¤å®ãããããã¹ããªã¼ã ï¼ï¼ï¼ããPESãããï¼
ï¼ï¼ãæ½åºããããã®ããã«ãã¦æ½åºãããPESãã
ãï¼ï¼ï¼ã¯ãï¼°ï¼´ï¼³æ½åºå¨ï¼ï¼ã«ä¾çµ¦ããããï¼°ï¼´ï¼³æ½
åºå¨ï¼ï¼ã¯ãPESãããï¼ï¼ï¼ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ½
åºããããã®ãããªæ½åºã¯ãä¾ãã°ãå³ï¼ï¼ï½ï¼ã«ç¤ºã
ã·ã³ã¿ãã¯ã¹ã«å¾ã£ã¦è¡ããããThe 8 bits following the start code are "1100 XX
If it is XX â³, the decomposer 52 determines that the data is the PES header 140 corresponding to the main video data 150a, and determines that the PES header 1 from the bitstream 100.
40 is extracted. The PES header 140 extracted in this way is supplied to the PTS extractor 54. The PTS extractor 54 extracts the PTS 141 from the PES header 140. Such extraction is performed, for example, according to the syntax shown in FIG.
ãï¼ï¼ï¼ï¼ãã¾ããæ½åºãããPESãããï¼ï¼ï¼ã«ç¶
ã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã¯ããã©ã¼ããã¿ï¼ï¼ã«ä¾çµ¦ã
ãããThe main video data 150a following the extracted PES header 140 is supplied to the formatter 55.
ãï¼ï¼ï¼ï¼ãã¹ã¿ã¼ãã³ã¼ãã«ç¶ãï¼ãããã"1011 11
01"ã§ããå ´åã«ã¯ãåè§£å¨ï¼ï¼ã¯ããã®ãã¼ã¿ã坿
åãã¼ã¿ï¼ï¼ï¼ï½ã«å¯¾å¿ããPESãããï¼ï¼ï¼ã§ãã
ã¨å¤å®ãããããã¹ããªã¼ã ï¼ï¼ï¼ããPESãããï¼
ï¼ï¼ãæ½åºããããã®ããã«ãã¦æ½åºãããPESãã
ãï¼ï¼ï¼ã¯ãï¼°ï¼´ï¼³æ½åºå¨ï¼ï¼ã«ä¾çµ¦ããããï¼°ï¼´ï¼³æ½
åºå¨ï¼ï¼ã¯ãPESãããï¼ï¼ï¼ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ½
åºããããã®ãããªæ½åºã¯ãä¾ãã°ãå³ï¼ï¼ï½ï¼ã«ç¤ºã
ã·ã³ã¿ãã¯ã¹ã«å¾ã£ã¦è¡ããããThe 8 bits following the start code are "1011 11
In the case of 01 â, the decomposer 52 determines that the data is the PES header 140 corresponding to the sub-picture data 150b, and determines that the PES header 1 from the bitstream 100.
40 is extracted. The PES header 140 extracted in this way is supplied to the PTS extractor 54. The PTS extractor 54 extracts the PTS 141 from the PES header 140. Such extraction is performed, for example, according to the syntax shown in FIG.
ãï¼ï¼ï¼ï¼ãã¾ããæ½åºãããPESãããï¼ï¼ï¼ã«ç¶
ã坿 åãã¼ã¿ï¼ï¼ï¼ï½ã¯ããã©ã¼ããã¿ï¼ï¼ã«ä¾çµ¦ã
ãããThe sub-picture data 150b following the extracted PES header 140 is supplied to the formatter 55.
ãï¼ï¼ï¼ï¼ãã¹ã¿ã¼ãã³ã¼ãã«ç¶ãï¼ãããã"110X XX
XX"ã§ããå ´åã«ã¯ãåè§£å¨ï¼ï¼ã¯ããã®ãã¼ã¿ãé³å£°
ãã¼ã¿ï¼ï¼ï¼ï½ã«å¯¾å¿ããPESãããï¼ï¼ï¼ã§ããã¨
å¤å®ãããããã¹ããªã¼ã ï¼ï¼ï¼ããPESãããï¼ï¼
ï¼ãæ½åºããããã®ããã«ãã¦æ½åºãããPESããã
ï¼ï¼ï¼ã¯ãï¼°ï¼´ï¼³æ½åºå¨ï¼ï¼ã«ä¾çµ¦ããããï¼°ï¼´ï¼³æ½åº
å¨ï¼ï¼ã¯ãPESãããï¼ï¼ï¼ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ½åº
ããããã®ãããªæ½åºã¯ãä¾ãã°ãå³ï¼ï¼ï½ï¼ã«ç¤ºãã·
ã³ã¿ãã¯ã¹ã«å¾ã£ã¦è¡ãããã8 bits following the start code are "110X XX
If it is XX â³, the decomposer 52 determines that the data is the PES header 140 corresponding to the audio data 150c, and the bitstream 100 to the PES header 14 is determined.
Extract 0. The PES header 140 extracted in this way is supplied to the PTS extractor 54. The PTS extractor 54 extracts the PTS 141 from the PES header 140. Such extraction is performed, for example, according to the syntax shown in FIG.
ãï¼ï¼ï¼ï¼ãã¾ããæ½åºãããPESãããï¼ï¼ï¼ã«ç¶
ãé³å£°ãã¼ã¿ï¼ï¼ï¼ï½ã¯ããã©ã¼ããã¿ï¼ï¼ã«ä¾çµ¦ãã
ããThe audio data 150c following the extracted PES header 140 is supplied to the formatter 55.
ãï¼ï¼ï¼ï¼ãã¹ã¿ã¼ãã³ã¼ãã«ç¶ãï¼ãããã"0000 00
00"ã§ããå ´åã«ã¯ãåè§£å¨ï¼ï¼ã¯ããã®ãã¼ã¿ããã¯
ãã£ã¹ã¿ã¼ãã³ã¼ãï¼ï¼°ï¼³ï¼£ï¼ï¼ï¼ï¼ï½ã§ããã¨å¤å®
ãããã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ããã©ã¼ããã¿ï¼
ï¼ã«ä¾çµ¦ããã8 bits following the start code are "0000 00"
If it is "00", the decomposer 52 determines that the data is the picture start code (PSC) 162a, and outputs the picture start code detection signal to the formatter 5
5
ãï¼ï¼ï¼ï¼ããã©ã¼ããã¿ï¼ï¼ã¯ããã¯ãã£ã¹ã¿ã¼ãã³
ã¼ãæ¤åºä¿¡å·ã«å¿çãã¦ãï¼°ï¼´ï¼³æ½åºå¨ï¼ï¼ããåºåã
ããï¼°ï¼´ï¼³ï¼ï¼ï¼ã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã坿 åãã¼
ã¿ï¼ï¼ï¼ï½ããã³é³å£°ãã¼ã¿ï¼ï¼ï¼ï½ã®æå®ã®ä½ç½®ã«æ¿
å
¥ããããã®çµæããã©ã¼ããã¿ï¼ï¼ããã¯ãï¼°ï¼´ï¼³ï¼
ï¼ï¼ãæ¿å
¥ããã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã坿 åãã¼ã¿
ï¼ï¼ï¼ï½ããã³é³å£°ãã¼ã¿ï¼ï¼ï¼ï½ããåºåããããã¾
ãããã©ã¼ããã¿ï¼ï¼ãããã¢ãã¬ã¹ä¿¡å·ï¼ï¼ï¼ï½ãï¼
ï¼ï¼ï½ããåºåããããIn response to the picture start code detection signal, the formatter 55 inserts the PTS 141 output from the PTS extractor 54 into the main video data 150a, the sub video data 150b and the audio data 150c at predetermined positions. As a result, from the formatter 55, PTS1
The main video data 160a, the sub video data 160b, and the audio data 160c in which 41 is inserted are output. In addition, the formatter 55 outputs the address signals 180a-1
80c is output.
ãï¼ï¼ï¼ï¼ãå³ï¼ã¯ããã©ã¼ããã¿ï¼ï¼ã®æ§æã示ãã
ãã©ã¼ããã¿ï¼ï¼ã¯ãï¼°ï¼´ï¼³ã¬ã¸ã¹ã¿ï¼ï¼ï¼ã¨ã主æ å
ãã¼ã¿ãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã¨ã坿 åãã¼ã¿ãã©ã¼
ããã¿é¨ï¼ï¼ï¼ï½ã¨ãé³å£°ãã¼ã¿ãã©ã¼ããã¿é¨ï¼ï¼ï¼
ï½ã¨ãå«ããFIG. 7 shows the structure of the formatter 55.
The formatter 55 includes a PTS register 550, a main video data formatter unit 560a, a sub video data formatter unit 560b, and an audio data formatter unit 560.
c.
ãï¼ï¼ï¼ï¼ãï¼°ï¼´ï¼³ã¬ã¸ã¹ã¿ï¼ï¼ï¼ã«ã¯ãï¼°ï¼´ï¼³æ½åºå¨
ï¼ï¼ã«ãã£ã¦æ½åºãããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ ¼ç´ããããThe PTS register 550 stores the PTS 141 extracted by the PTS extractor 54.
ãï¼ï¼ï¼ï¼ã主æ åãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã¯ã鏿å
è·¯ï¼ï¼ï¼ï½ã¨ãã¢ãã¬ã¹çæåè·¯ï¼ï¼ï¼ï½ã¨ãå«ããThe main video formatter section 560a includes a selection circuit 561a and an address generation circuit 562a.
ãï¼ï¼ï¼ï¼ã鏿åè·¯ï¼ï¼ï¼ï½ã«ã¯ã主æ åãã¼ã¿ï¼ï¼
ï¼ï½ãã¯ã¼ãåä½ã§å
¥åãããã鏿åè·¯ï¼ï¼ï¼ï½ã¯ã
ãã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ããã¼ã¬ãã«ã§ããå ´
åã«ã¯ã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã®åã¯ã¼ãã鏿çã«åº
åããã鏿åè·¯ï¼ï¼ï¼ï½ã¯ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ã
æ¤åºä¿¡å·ããã¼ã¬ãã«ãããã¤ã¬ãã«ã«å¤åãããã¨ã«
å¿çãã¦ãï¼°ï¼´ï¼³ã¬ã¸ã¹ã¿ï¼ï¼ï¼ã«æ ¼ç´ãããï¼°ï¼´ï¼³ï¼
ï¼ï¼ã鏿çã«åºåããããã®ããã«ãã¦ããã¯ãã£ã¹
ã¿ã¼ãã³ã¼ãï¼ï¼ï¼ï½ã«ç¶ãã¯ã¼ãä½ç½®ã«ãï¼°ï¼´ï¼³ï¼ï¼
ï¼ãæ¿å
¥ãããã¨ãã§ãããã¾ãããã¯ãã£ã¹ã¿ã¼ãã³
ã¼ãï¼ï¼ï¼ï½ããæå®æ°ã®ã¯ã¼ãã ãé¢ããä½ç½®ã«ãï¼°
ï¼´ï¼³ï¼ï¼ï¼ãæ¿å
¥ããããã«ãããã¨ãã§ããããã®å ´
åããã®æå®æ°ã®ã¯ã¼ãã¯ã鏿åè·¯ï¼ï¼ï¼ï½ã«ãã
ã¦ãä¾ãã°ãã¯ããã¯ä¿¡å·ï¼å³ç¤ºããï¼ã«åºã¥ãã¦ã«ã¦
ã³ãããå¾ããThe selection circuit 561a stores the main video data 15
0a is input in word units. The selection circuit 561a is
When the picture start code detection signal is at low level, each word of the main video data 150a is selectively output. The selection circuit 561a responds to the change of the picture start code detection signal from the low level to the high level, and the PTS1 stored in the PTS register 550.
41 is selectively output. In this way, the PTS14 is added to the word position following the picture start code 162a.
1 can be inserted. In addition, at a position apart from the picture start code 162a by a predetermined number of words, P
It is also possible to insert the TS 141. In this case, the predetermined number of words can be counted in the selection circuit 561a based on, for example, a clock signal (not shown).
ãï¼ï¼ï¼ï¼ãã¢ãã¬ã¹çæåè·¯ï¼ï¼ï¼ï½ã¯ãï¼°ï¼´ï¼³ï¼ï¼
ï¼ãæ¿å
¥ããã主æ åãã¼ã¿ï¼ï¼ï¼ï½ãæ ¼ç´ãã主æ å
ãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½å
ã®ä½ç½®ã示ãã¢ãã¬ã¹ä¿¡å·ï¼ï¼ï¼
ï½ãçæãããThe address generation circuit 562a uses the PTS14
The address signal 180 indicating the position in the main video data storage unit 20a storing the main video data 160a in which 1 is inserted.
Generate a.
ãï¼ï¼ï¼ï¼ã坿 åãã¼ã¿ãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ãã
ã³é³å£°ãã¼ã¿ãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã®æ§æããã³åä½
ã¯ã主æ åãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã®æ§æããã³åä½ã¨
åæ§ã§ãããThe configurations and operations of the sub-picture data formatter section 560b and the audio data formatter section 560c are similar to those of the main picture formatter section 560a.
ãï¼ï¼ï¼ï¼ãï¼å®æ½ã®å½¢æ
ï¼ï¼å³ï¼ã¯ãæ¬çºæã®å®æ½ã®
å½¢æ
ï¼ã®ãã³ã¼ãè£
ç½®ï¼ã®æ§æã示ãããã³ã¼ãè£
ç½®ï¼
ã®æ§æã¯ããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¨èªã¿åºãå¶å¾¡
é¨ï¼ï¼ã¨ãé¤ãã¦ãå³ï¼ã«ç¤ºããã³ã¼ãè£
ç½®ï¼ã®æ§æã¨
åä¸ã§ãããå¾ã£ã¦ãåä¸ã®æ§æè¦ç´ ã«ã¯åä¸ã®åç
§çª
å·ãä»ãã¦ãã®èª¬æãçç¥ããã(Second Embodiment) FIG. 8 shows a configuration of a decoding device 2 according to a second embodiment of the present invention. Decoding device 2
2 is the same as the configuration of the decoding device 1 shown in FIG. 2 except for the bitstream decomposer 11 and the read control unit 35. Therefore, the same components are designated by the same reference numerals and the description thereof will be omitted.
ãï¼ï¼ï¼ï¼ããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ããããã¹
ããªã¼ã ï¼ï¼ï¼ã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã¨å¯æ åãã¼ã¿
ï¼ï¼ï¼ï½ã¨é³å£°ãã¼ã¿ï¼ï¼ï¼ï½ã¨ã«åè§£ããããããã¹
ããªã¼ã åè§£å¨ï¼ï¼ã¯ãPESãããï¼ï¼ï¼ããï¼°ï¼´ï¼³
ï¼ï¼ï¼ãæ½åºãããã®ï¼°ï¼¥ï¼³ãããï¼ï¼ï¼ã«ç¶ãï¼ä»¥ä¸
ã®ãã¼ã¿ï¼ï¼ï¼ï¼ä¸»æ åãã¼ã¿ï¼ï¼ï¼ï½ã¾ãã¯å¯æ åã
ã¼ã¿ï¼ï¼ï¼ï½ã¾ãã¯é³å£°ãã¼ã¿ï¼ï¼ï¼ï½ï¼ã®æå®ã®ä½ç½®
ã«ï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ¿å
¥ãããããã«ããããã¹ããªã¼ã
åè§£å¨ï¼ï¼ã¯ããã¼ã¿ï¼ï¼ï¼ã®æå®ã®ä½ç½®ã«ã¢ãã¬ã¹ã
ã¤ã³ã¿ï¼ï¼ï¼ãæ¿å
¥ãããThe bit stream decomposer 11 decomposes the bit stream 100 into main video data 150a, sub video data 150b and audio data 150c. The bit stream decomposer 11 uses the PES header 140 to PTS.
141 is extracted, and the PTS 141 is inserted at a predetermined position of one or more data 150 (main video data 150a, sub video data 150b, or audio data 150c) following the PES header 140. Further, the bitstream decomposer 11 inserts the address pointer 171 at a predetermined position of the data 150.
ãï¼ï¼ï¼ï¼ãå³ï¼ã¯ããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã«ã
ã£ã¦ãããã¡ã¡ã¢ãªï¼ï¼ã®ä¸»æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã«
æ ¼ç´ããã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã®æ§é ã示ããå³ï¼ã«
示ãããä¾ã§ã¯ãã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã¯ãåã¢ã¯ã»
ã¹ã¦ãããï¼ï¼ï¼ï½ã®å
é ããï¼ã¯ã¼ãç®ã«æ¿å
¥ããã¦
ããããã¡ãããã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®æ¿å
¥ä½ç½®ã
ã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã®å
é ããï¼ã¯ã¼ãç®ã«éå®
ãããããã§ã¯ãªããåã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã«å
±
éã®ã«ã¼ã«ã«å¾ã£ã¦æ¿å
¥ãããéããã¢ãã¬ã¹ãã¤ã³ã¿
ï¼ï¼ï¼ã¯ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã®ä»»æã®ä½ç½®ã«æ¿
å
¥ããå¾ããFIG. 9 shows the structure of the main video data 160a stored in the main video data storage section 20a of the buffer memory 20 by the bitstream decomposer 11. In the example shown in FIG. 9, the address pointer 171 is inserted in the third word from the head of each access unit 161a. Of course, the insertion position of the address pointer 171 is not limited to the third word from the beginning of the access unit 161a. The address pointer 171 can be inserted at an arbitrary position of the access unit 161a as long as it is inserted according to a rule common to each access unit 161a.
ãï¼ï¼ï¼ï¼ãã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®å¤ã¯ãæå»çã«
徿¹ã«ãããã¡ã¡ã¢ãªï¼ï¼ã«æ ¼ç´ãããã¢ã¯ã»ã¹ã¦ãã
ãã®ã¢ãã¬ã¹ãã¤ã³ã¿ã®ã¢ãã¬ã¹ã§ãããä¾ãã°ãå³ï¼
ã«ç¤ºãããä¾ã«ããã¦ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼
ã®æ¬¡ã«ã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼ããããã¡ã¡ã¢ãª
ï¼ï¼ã«æ ¼ç´ãããã¨ä»®å®ãããããã«ãã¢ã¯ã»ã¹ã¦ãã
ãï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®ã¢ãã¬ã¹
ã¯ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³ã¿
ï¼ï¼ï¼ã®ã¢ãã¬ã¹ããï¼ï¼ï¼ã¯ã¼ã徿¹ã§ããã¨ä»®å®ã
ãããã®å ´åãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬
ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®å¤ã¯ãï¼ï¼ï¼ã«è¨å®ããããThe value of the address pointer 171 is the address of the address pointer of the access unit stored in the buffer memory 20 backward in time. For example, in FIG.
In the example shown in FIG.
Next, it is assumed that the access unit 161a-2 is stored in the buffer memory 20. Further, it is assumed that the address of the address pointer 171 of the access unit 161a-2 is 255 words behind the address of the address pointer 171 of the access unit 161a-1. In this case, the value of the address pointer 171 of the access unit 161a-1 is set to 255.
ãï¼ï¼ï¼ï¼ããã®ããã«ãã¦ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼
ï½âï¼ããã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼ã«åããæ¹å
ã«ãã¤ã³ã¿ãã§ã¼ã³ãå½¢æãããããã®ãã¤ã³ã¿ãã§ã¼
ã³ã®æ¹åã¯ãå³ï¼ã«ããã¦ç¢å°ã§ç¤ºããããIn this way, the access unit 161
A pointer chain is formed in the direction from a-1 to the access unit 161a-2. The direction of this pointer chain is indicated by the arrow in FIG.
ãï¼ï¼ï¼ï¼ããã®ãããªãã¤ã³ã¿ãã§ã¼ã³ã®å½¢æã¯ãä¾
ãã°ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³
ã¿ï¼ï¼ï¼ã®ã¢ãã¬ã¹ï¼ï¼¡ï¼ï¼ãéé¿ãã¦ãããã¢ã¯ã»ã¹
ã¦ãããï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®ã¢ã
ã¬ã¹ï¼ï¼¡ï¼ï¼ãæ±ããã¢ãã¬ã¹ï¼ï¼¡ï¼ï¼ãã¢ãã¬ã¹ï¼ï¼¡
ï¼ï¼ã«ãã£ã¦æç¤ºãããä½ç½®ã«æ ¼ç´ãããã¨ã«ãã£ã¦é
æããããã¢ãã¬ã¹ï¼ï¼¡ï¼ï¼ã¯ãã¢ãã¬ã¹ï¼ï¼¡ï¼ï¼ãåº
æºã¨ããç¸å¯¾çãªã¢ãã¬ã¹ã§ãã£ã¦ãããããã®ãããª
ç¸å¯¾çãªã¢ãã¬ã¹ã¯ãä¾ãã°ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ã
æ¤åºä¿¡å·ãåãåã£ã¦ãããã®æ¬¡ã®ãã¯ãã£ã¹ã¿ã¼ãã³
ã¼ãæ¤åºä¿¡å·ãåãåãã¾ã§ã«ããã©ã¼ããã¿ï¼ï¼ï¼å³
ï¼ï¼ãééãããã¼ã¿éãã«ã¦ã³ããããã¨ã«ãã£ã¦å¾
ããããTo form such a pointer chain, for example, the address (A1) of the address pointer 171 of the access unit 161a-1 is saved and the address (A2) of the address pointer 171 of the access unit 161a-2 is obtained. , Address (A2) to address (A
Achieved by storing in the location indicated by 1). The address (A2) may be a relative address based on the address (A1). Such a relative address is obtained, for example, by counting the amount of data that has passed through the formatter 55 (FIG. 6) from the reception of the picture start code detection signal to the reception of the next picture start code detection signal. To be
ãï¼ï¼ï¼ï¼ãå³ï¼ï¼ã¯ããã©ã¼ããã¿ï¼ï¼ï¼¡ã®æ§æã示
ãããã©ã¼ããã¿ï¼ï¼ï¼å³ï¼ï¼ããã©ã¼ããã¿ï¼ï¼ï¼¡ã«
ç½®æãããã¨ã«ãã£ã¦ãã¼ã¿ï¼ï¼ï¼ã®æå®ã®ä½ç½®ã«ã¢ã
ã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ãæ¿å
¥ãããã¨ãã§ãããFIG. 10 shows the structure of the formatter 55A. By replacing the formatter 55 (FIG. 6) with the formatter 55A, the address pointer 170 can be inserted at a predetermined position of the data 150.
ãï¼ï¼ï¼ï¼ããã©ã¼ããã¿ï¼ï¼ï¼¡ã¯ãï¼°ï¼´ï¼³ã¬ã¸ã¹ã¿ï¼
ï¼ï¼ã¨ã主æ åãã¼ã¿ãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã¨ã坿
åãã¼ã¿ãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã¨ãé³å£°ãã¼ã¿ãã©ã¼
ããã¿é¨ï¼ï¼ï¼ï½ã¨ãå«ããThe formatter 55A includes the PTS register 5
50, a main video data formatter unit 660a, a sub video data formatter unit 660b, and an audio data formatter unit 660c.
ãï¼ï¼ï¼ï¼ãï¼°ï¼´ï¼³ã¬ã¸ã¹ã¿ï¼ï¼ï¼ã«ã¯ãï¼°ï¼´ï¼³æ½åºå¨
ï¼ï¼ã«ãã£ã¦æ½åºãããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ ¼ç´ããããThe PTS register 550 stores the PTS 141 extracted by the PTS extractor 54.
ãï¼ï¼ï¼ï¼ã主æ åãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã¯ãå³ï¼ã«
示ã主æ åãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã®æ§æã«å ãã¦ãã
ã¼ã¿ã«ã¦ã³ã¿ï¼ï¼ï¼ï½ã¨ãã¢ãã¬ã¹ãã¤ã³ã¿ã¬ã¸ã¹ã¿ï¼
ï¼ï¼ï½ã¨ã鏿åè·¯ï¼ï¼ï¼ï½ã¨ã鏿åè·¯ï¼ï¼ï¼ï½ã¨ã
ããã«å«ããThe main video formatter unit 660a has a data counter 661a and an address pointer register 6 in addition to the configuration of the main video formatter unit 560a shown in FIG.
62a, a selection circuit 663a, and a selection circuit 664a are further included.
ãï¼ï¼ï¼ï¼ããããã®è¿½å ã®åè·¯ï¼ï¼ï¼ï½ãï¼ï¼ï¼ï½
ã¯ãé£ç¶ããï¼ã¤ã®ãã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã«
対ãã¦æå®ã®åä½ãè¡ãããã«æ§æããã¦ããã以ä¸ã
é£ç¶ããï¼ã¤ã®ãã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã®ãã¡
å
ã®ãã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ããæ¤åºä¿¡å·ï¼³
ï¼ãã¨ãããé£ç¶ããï¼ã¤ã®ãã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤
åºä¿¡å·ã®ãã¡å¾ã®ãã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã
ãæ¤åºä¿¡å·ï¼³ï¼ãã¨ããããã®æå®ã®åä½ã¯ã表ï¼ã«ç¤º
ãã¨ããã§ãããThese additional circuits 661a-664a
Are configured to perform a predetermined operation on two consecutive picture start code detection signals. Less than,
Of the two consecutive picture start code detection signals, the preceding picture start code detection signal is called "detection signal S".
The picture start code detection signal subsequent to the picture start code detection signal is referred to as "detection signal S2". The predetermined operation is as shown in Table 1.
ãï¼ï¼ï¼ï¼ã[0083]
ã表ï¼ã [Table 1]
ãï¼ï¼ï¼ï¼ãã¢ãã¬ã¹ãã¤ã³ã¿ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï½ã¯ãæ¤
åºä¿¡å·ï¼³ï¼ããã¼ã¬ãã«ãããã¤ã¬ãã«ã«å¤åãããã¨
ã«å¿çãã¦ãã¢ãã¬ã¹çæåè·¯ï¼ï¼ï¼ï½ã«ãã£ã¦çæã
ããã¢ãã¬ã¹ãæ ¼ç´ãããããã¯ãã¢ã¯ã»ã¹ã¦ãããï¼
ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®ã¢ãã¬ã¹ï¼ï¼¡
ï¼ï¼ãéé¿ããããã§ããï¼å³ï¼åç
§ï¼ãThe address pointer register 662a stores the address generated by the address generation circuit 562a in response to the detection signal S1 changing from the low level to the high level. This is access unit 1
61a-1 address pointer 171 address (A
This is for saving 1) (see FIG. 9).
ãï¼ï¼ï¼ï¼ããã¼ã¿ã«ã¦ã³ã¿ï¼ï¼ï¼ï½ã¯ãæ¤åºä¿¡å·ï¼³ï¼
ããã¼ã¬ãã«ãããã¤ã¬ãã«ã«å¤åãããã¨ã«å¿çã
ã¦ãã«ã¦ã³ãå¤ããªã»ããããå¾ãã«ã¦ã³ãåä½ãéå§
ãããããã¯ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ãåã
åã£ã¦ãããã®æ¬¡ã®ãã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã
åãåãã¾ã§ã«ããã©ã¼ããã¿ï¼ï¼ï¼¡ãééãã主æ å
ãã¼ã¿ï¼ï¼ï¼ï½ã®ã¯ã¼ãæ°ãã«ã¦ã³ãããããã§ãããThe data counter 661a detects the detection signal S1.
In response to the change from the low level to the high level, the count value is reset and then the count operation is started. This is to count the number of words of the main video data 150a that has passed through the formatter 55A from the reception of the picture start code detection signal to the reception of the next picture start code detection signal.
ãï¼ï¼ï¼ï¼ã鏿åè·¯ï¼ï¼ï¼ï½ã¯ãæ¤åºä¿¡å·ï¼³ï¼ããã¼
ã¬ãã«ãããã¤ã¬ãã«ã«å¤åãããã¨ã«å¿çãã¦ããã¼
ã¿ã«ã¦ã³ã¿ï¼ï¼ï¼ï½ã«ãã£ã¦ã«ã¦ã³ããããã«ã¦ã³ãå¤
ã鏿çã«åºåãããããã«ãããã¢ã¯ã»ã¹ã¦ãããï¼
ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®ä½ç½®ã«å¯¾ããã¢
ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼
ã®ç¸å¯¾çãªä½ç½®ã示ããªãã»ããå¤ã鏿åè·¯ï¼ï¼ï¼ï½
ã®åºåã¨ãã¦åºåãããï¼å³ï¼åç
§ï¼ãThe selection circuit 663a selectively outputs the count value counted by the data counter 661a in response to the detection signal S2 changing from the low level to the high level. As a result, the access unit 1
Address pointer 171 of access unit 161a-2 corresponding to the position of address pointer 171 of 61a-1
Of the offset value indicating the relative position of the selection circuit 663a.
(See FIG. 9).
ãï¼ï¼ï¼ï¼ã鏿åè·¯ï¼ï¼ï¼ï½ã¯ãæ¤åºä¿¡å·ï¼³ï¼ããã¼
ã¬ãã«ãããã¤ã¬ãã«ã«å¤åãããã¨ã«å¿çãã¦ãã¢ã
ã¬ã¹ãã¤ã³ã¿ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï½ã«æ ¼ç´ãããã¢ãã¬ã¹ã
鏿çã«åºåãããããã«ãããã¢ãã¬ã¹ï¼ï¼¡ï¼ï¼ã«ã
ã£ã¦æç¤ºãããä½ç½®ã«ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼
ã®ã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®ç¸å¯¾çãªã¢ãã¬ã¹ï¼ï¼¡ï¼ï¼
ãæ ¼ç´ãããï¼å³ï¼åç
§ï¼ãSelect circuit 664a selectively outputs the address stored in address pointer register 662a in response to detection signal S2 changing from low level to high level. As a result, the access unit 161a-2 is located at the position designated by the address (A1).
Relative address of the address pointer 171 (A2)
Is stored (see FIG. 9).
ãï¼ï¼ï¼ï¼ã坿 åãã¼ã¿ãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ãã
ã³é³å£°ãã¼ã¿ãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã®æ§æããã³åä½
ã¯ã主æ åãã©ã¼ããã¿é¨ï¼ï¼ï¼ï½ã®æ§æããã³åä½ã¨
åæ§ã§ãããThe configurations and operations of the sub-picture data formatter section 660b and the audio data formatter section 660c are similar to those of the main-picture formatter section 660a.
ãï¼ï¼ï¼ï¼ããªãã坿 åãã¼ã¿ï¼ï¼ï¼ï½ããã³é³å£°ã
ã¼ã¿ï¼ï¼ï¼ï½ã®æ§é ãã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã®æ§é ã¨
åæ§ã§ãããThe structures of the sub-picture data 160b and the audio data 160c are the same as that of the main picture data 160a.
ãï¼ï¼ï¼ï¼ã宿½ã®å½¢æ
ï¼ã¨åæ§ã«ãã¦ããããã¹ããª
ã¼ã ï¼ï¼ï¼ã«å«ã¾ããããã¯ãããï¼ï¼ï¼ããã³ï¼°ï¼¥ï¼³
ãããï¼ï¼ï¼ã¯ãããããããããã¡ã¡ã¢ãªï¼ï¼ã«ã¯æ ¼
ç´ãããªãããã®ä»£ããã«ããããã¹ããªã¼ã åè§£å¨ï¼
ï¼ã¯ãããã¯ãããï¼ï¼ï¼ããSCRï¼ï¼ï¼ãæ½åºãã
æ½åºãããSCRï¼ï¼ï¼ãã³ã³ããã¼ã©ï¼ï¼ã«éããã¾
ãããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ãPESãããï¼ï¼
ï¼ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ½åºãããã®ï¼°ï¼¥ï¼³ãããï¼ï¼ï¼
ã«ç¶ãï¼ä»¥ä¸ã®ãã¼ã¿ï¼ï¼ï¼ã®æå®ã®ä½ç½®ã«ï¼°ï¼´ï¼³ï¼ï¼
ï¼ãæ¿å
¥ãããããã«ããããã¹ããªã¼ã åè§£å¨ï¼ï¼
ã¯ãï¼ä»¥ä¸ã®ãã¼ã¿ï¼ï¼ï¼ã®æå®ã®ä½ç½®ã«ã¢ãã¬ã¹ãã¤
ã³ã¿ï¼ï¼ï¼ãæ¿å
¥ãããSimilar to the first embodiment, the pack header 120 and PES included in the bitstream 100 are included.
None of the headers 140 are stored in the buffer memory 20. Instead, the bitstream decomposer 1
1 extracts the SCR 121 from the pack header 120,
The extracted SCR 121 is sent to the controller 30. In addition, the bitstream decomposer 11 uses the PES header 14
PTS 141 is extracted from 0 and its PES header 140
PTS14 at a predetermined position of one or more data 150 following
Insert 1. Furthermore, the bit stream decomposer 11
Inserts the address pointer 171 at a predetermined position of one or more data 150.
ãï¼ï¼ï¼ï¼ããã®ããã«ããã³ã¼ããããä¿¡å·ãåºåã
ãã¿ã¤ãã³ã°ãè¦å®ããï¼°ï¼´ï¼³ï¼ï¼ï¼ã¨ã¢ãã¬ã¹ãã¤ã³
ã¿ï¼ï¼ï¼ã¯ããã¼ã¿ï¼ï¼ï¼ã®æå®ã®ä½ç½®ã«ç´æ¥çã«æ¿å
¥
ããããããã«ããããã³ã¼ãè£
ç½®ï¼ã¯ãCPUï¼ï¼ï¼
ã®å©ããåãããã¨ãªãããã³ã¼ããããä¿¡å·ãåºåã
ãã¿ã¤ãã³ã°ã®åæåãããå®è¡ãããã¨ãã§ãããï¼£
ï¼°ï¼µï¼ï¼ï¼ãããã¯ãããï¼ï¼ï¼ã¨ï¼°ï¼¥ï¼³ãããï¼ï¼ï¼
ã¨ãè§£æãããã®è§£æçµæã®å¯¾å¿é¢ä¿ãç¶æããå¿
è¦ã
ãªããããã«ãããCPUï¼ï¼ï¼ã¨ãã³ã¼ãè£
ç½®ï¼ã¨ã®
éã®å¶å¾¡ãç°¡åã¨ãªããCPUï¼ï¼ï¼ã®è² è·ãå°ãããª
ããAs described above, the PTS 141 and the address pointer 171 which define the timing of outputting the decoded signal are directly inserted into the predetermined position of the data 150. Accordingly, the decoding device 2 causes the CPU 360 to
It is possible to perform the timing synchronization of outputting the decoded signal without the help of. C
The PU 360 has a pack header 120 and a PES header 140.
It is not necessary to analyze and and maintain the correspondence of the analysis results. This simplifies the control between the CPU 360 and the decoding device 2 and reduces the load on the CPU 360.
ãï¼ï¼ï¼ï¼ãã¾ãããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã¯ãã
ã³ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ã®åºæºãè¦å®ã
ãSCRï¼ï¼ï¼ãããã¯ãããï¼ï¼ï¼ããæ½åºãããã³
ã¼ããããä¿¡å·ãåºåããã¿ã¤ãã³ã°ãè¦å®ããï¼°ï¼´ï¼³
ï¼ï¼ï¼ãPESãããï¼ï¼ï¼ããæ½åºãããããã«ã
ãããããã®ãããããããã¡ã¡ã¢ãªï¼ï¼ã«æ ¼ç´ããã
ã¨ãçããããã«ããããããã¡ã¡ã¢ãªï¼ï¼ã«æ ¼ç´ãã
ããã¼ã¿éã忏ãããã¨ãã§ããããã®çµæãããã
ã¡ã¡ã¢ãªï¼ï¼ã®ãµã¤ãºãå°ãããããã¨ãã§ãããThe bit stream decomposer 11 also extracts from the pack header 120 the SCR 121 that defines the reference for the timing of outputting the decoded signal, and the PTS that defines the timing of outputting the decoded signal.
141 is extracted from the PES header 140. This saves storing those headers in the buffer memory 20. As a result, the amount of data stored in the buffer memory 20 can be reduced. As a result, the size of the buffer memory 20 can be reduced.
ãï¼ï¼ï¼ï¼ãå³ï¼ãåã³åç
§ãã¦ãèªã¿åºãå¶å¾¡é¨ï¼ï¼
ã®åä½ã説æãããèªã¿åºãå¶å¾¡é¨ï¼ï¼ã¯ã宿½ã®å½¢æ
ï¼ã§èª¬æããåä½ã«å ãã¦ãã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã
å©ç¨ãã¦ç¹æ®åçåä½ãåæåããåä½ãå®è¡ãããReferring again to FIG. 8, the read control section 35.
Will be described. In addition to the operation described in the first embodiment, the read control unit 35 uses the address pointer 171 to execute the special reproduction operation and the synchronization operation.
ãï¼ï¼ï¼ï¼ãèªã¿åºãå¶å¾¡é¨ï¼ï¼ã¯ãèªã¿åºãå¶å¾¡å¨ï¼
ï¼ï½ãï¼ï¼ï½ãå«ãã§ããã以ä¸ãèªã¿åºãå¶å¾¡å¨ï¼ï¼
ï½ã®åä½ãä¾ã«ã¨ã説æãããèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã
ãã³èªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã®åä½ã¯ãèªã¿åºãå¶å¾¡å¨ï¼
ï¼ï½ã®åä½ã¨åæ§ã§ãããThe read control unit 35 includes the read controller 3
5a to 35c are included. Hereinafter, the read controller 35
The operation a will be described as an example. The operations of the read controller 35b and the read controller 35c are performed by the read controller 3
It is similar to the operation of 5a.
ãï¼ï¼ï¼ï¼ãã¯ããã«ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã®åçå
ä½ã説æãããFirst, the reproducing operation of the read controller 35a will be described.
ãï¼ï¼ï¼ï¼ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãå
¥åé¨ï¼ï¼ãä»
ãã¦å
¥åãããå¶å¾¡ä¿¡å·ï¼ï¼ï¼ã«å¾ã£ã¦åä½ãããå¶å¾¡
ä¿¡å·ï¼ï¼ï¼ããé常åçã¢ã¼ããã示ãå ´åã«ã¯ãèªã¿
åºãå¶å¾¡å¨ï¼ï¼ï½ã®åä½ã¯ã宿½ã®å½¢æ
ï¼ã§è¿°ã¹ãåä½
ã¨åæ§ã§ããããããã¡ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ã主
æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã«æ ¼ç´ããã主æ åãã¼ã¿ï¼ï¼
ï¼ï½ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ãï¼åä½ã¨ãã¦èªã¿åº
ããèªã¿åºãããã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ããPSC
ï¼ï¼ï¼ï½ã¨ï¼°ï¼´ï¼³ï¼ï¼ï¼ã¨ãé¤ãããã¼ã¿ã主æ åãã¼
ã¿ãã³ã¼ãï¼ï¼ï½ã«ä¾çµ¦ãããã¾ããèªã¿åºãå¶å¾¡å¨ï¼
ï¼ï½ã¯ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ããï¼°ï¼´ï¼³ï¼ï¼ï¼ã
æ½åºããæ½åºãããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ¯è¼å¨ï¼ï¼ï½ã«ä¾çµ¦
ãããThe read controller 35a operates according to a control signal 362 input via the input section 50. When the control signal 362 indicates the "normal reproduction mode", the operation of the read controller 35a is the same as the operation described in the first embodiment. That is, the read controller 35a controls the main video data 16 stored in the main video data storage unit 20a.
0a is read with the access unit 161a as one unit, and the PSC is read from the read access unit 161a.
The data excluding 162a and the PTS 141 is supplied to the main video data decoder 40a. Also, the read controller 3
5a extracts the PTS 141 from the access unit 161a and supplies the extracted PTS 141 to the comparator 31a.
ãï¼ï¼ï¼ï¼ãå¶å¾¡ä¿¡å·ï¼ï¼ï¼ããï¼åéåçã¢ã¼ããã
示ãå ´åã«ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãæ åãã¼ã¿æ ¼
ç´é¨ï¼ï¼ï½ã«æ ¼ç´ããã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã®ã¢ã¯ã»
ã¹ã¦ãããï¼ï¼ï¼ï½ãèªã¿åºãã®ã«å
ã ã£ã¦ããã®ã¢ã¯
ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã®ã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ãèªã¿
åºããä¸è¿°ããããã«ãã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã«ã¯ã
æå»çã«å¾æ¹ã«ä½ç½®ããã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã®ã¢
ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®ã¢ãã¬ã¹ï¼¡ï¼ãæ ¼ç´ããã¦ã
ããèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãèªã¿åºãããã¢ãã¬ã¹ã
ã¤ã³ã¿ï¼ï¼ï¼ã«ç¶ããã¼ã¿ãèªã¿åºã代ããã«ããã®èª
ã¿åºãããã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã«ãã£ã¦æç¤ºããã
ã¢ãã¬ã¹ï¼¡ï¼ã«ä½ç½®ããã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã«ç¶ã
ãã¼ã¿ãèªã¿åºããããã¯ãï¼ã¤ã®ã¢ã¯ã»ã¹ã¦ãããï¼
ï¼ï¼ï½ã«ã¤ãï¼ã¤ã®å²åã§ã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã®
èªã¿åºããã¹ããããããã¨ãæå³ããããã®ããã«ã
ã¦ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãï¼åéåçãéæãããWhen the control signal 362 indicates the "double speed reproduction mode", the read controller 35a accesses the access unit 161a of the main video data 160a stored in the video data storage section 20a before reading the access unit 161a. The address pointer 171 of the unit 161a is read. As described above, the address pointer 171 includes
The address A1 of the address pointer 171 of the access unit 161a located at the rear in time is stored. The read controller 35a, instead of reading the data following the read address pointer 171, reads the data following the address pointer 171 located at the address A2 indicated by the read address pointer 171. This is two access units 1
This means that the reading of the access unit 161a is skipped at a rate of 61a. In this way, the read controller 35a achieves double speed reproduction.
ãï¼ï¼ï¼ï¼ãå³ï¼ï¼ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã«ããï¼
åéåçåä½ã説æããããã®å³ã§ããããé常åçã¢
ã¼ããã§ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãã¢ã¯ã»ã¹ã¦ãã
ãï¼ï¼ï¼ãï¼ï¼ï¼ãé æ¬¡èªã¿åºãããï¼åéåçã¢ã¼
ããã§ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãã¢ã¯ã»ã¹ã¦ããã
ï¼ï¼ï¼ãï¼ï¼ï¼ãï¼ï¼ï¼ããã³ï¼ï¼ï¼ã®ã¿ãé æ¬¡èªã¿åº
ãããã®ããã«ããï¼åéåçã¢ã¼ããã§ã¯ãã¢ã¯ã»ã¹
ã¦ãããï¼ï¼ï¼ãï¼ï¼ï¼ããã³ï¼ï¼ï¼ã®èªã¿åºããã¹ã
ããããããFIG. 11 shows the operation of the read controller 35a.
It is a figure for demonstrating a double speed reproduction operation. In the ânormal reproduction modeâ, the read controller 35a sequentially reads the access units 911 to 917. In the "double speed reproduction mode", the read controller 35a sequentially reads only the access units 911, 913, 915 and 917. Thus, in the "double speed reproduction mode", the reading of the access units 912, 914 and 916 is skipped.
ãï¼ï¼ï¼ï¼ãå¶å¾¡ä¿¡å·ï¼ï¼ï¼ããããªã¼ãºåçã¢ã¼ãã
ã示ãå ´åã«ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãã¢ãã¬ã¹ã
ã¤ã³ã¿ï¼ï¼ï¼ã«ç¶ããã¼ã¿ãç¹°ãè¿ãèªã¿åºããããã«
ãããåä¸ã®ã¢ã¯ã»ã¹ã¦ããããé£ç¶ãã¦åçãããã
ã¨ã«ãªããThe control signal 362 is "freeze reproduction mode".
, The read controller 35a repeatedly reads the data following the address pointer 171. As a result, the same access unit is continuously reproduced.
ãï¼ï¼ï¼ï¼ãå³ï¼ï¼ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã®æ§æã
示ããèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ã主æ åãã¼ã¿æ ¼ç´é¨ï¼
ï¼ï½ã«ããã¦ã¢ã¯ã»ã¹ãã¹ãä½ç½®ã示ãã¢ãã¬ã¹ã主æ
åãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã«åºåãããã®ã¢ãã¬ã¹ã«å¯¾å¿ã
ã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã主æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼ï½ã
ãåãåããFIG. 12 shows the configuration of the read controller 35a. The read controller 35a includes the main video data storage unit 2
The address indicating the position to be accessed at 0a is output to the main video data storage unit 20a, and the main video data 160a corresponding to the address is received from the main video data storage unit 20a.
ãï¼ï¼ï¼ï¼ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ããã¯ãã£ã¹ã¿ã¼
ãã³ã¼ãæ¤åºå¨ï¼ï¼ï¼ï¼ã¨ãï¼°ï¼´ï¼³æ½åºå¨ï¼ï¼ï¼ï¼ã¨ã
ï¼°ï¼´ï¼³ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã¨ãå«ããThe read controller 35a includes a picture start code detector 3500, a PTS extractor 3520,
And a PTS register 3530.
ãï¼ï¼ï¼ï¼ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºå¨ï¼ï¼ï¼ï¼
ã¯ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã«å«ã¾ããPSCï¼ï¼ï¼
ï½ãæ¤åºãã¦ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ãåºå
ãããPicture start code detector 3500
Is a PSC 162 included in the access unit 161a.
When a is detected, a picture start code detection signal is output.
ãï¼ï¼ï¼ï¼ãï¼°ï¼´ï¼³æ½åºå¨ï¼ï¼ï¼ï¼ã¯ãã¢ã¯ã»ã¹ã¦ãã
ãã«å«ã¾ããï¼°ï¼´ï¼³ï¼ï¼ï¼ãæ½åºããæ½åºãããï¼°ï¼´ï¼³
ï¼ï¼ï¼ãï¼°ï¼´ï¼³ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ãããï¼°ï¼´ï¼³ã¬
ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã®åºåã¯ãæ¯è¼å¨ï¼ï¼ï½ã«æ¥ç¶ãããã
ã¾ããï¼°ï¼´ï¼³æ½åºå¨ï¼ï¼ï¼ï¼ã¯ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼
ï¼ï½ããPSCï¼ï¼ï¼ï½ã¨ï¼°ï¼´ï¼³ï¼ï¼ï¼ã¨ãé¤ãããã¼
ã¿ã主æ åãã¼ã¿ãã³ã¼ãï¼ï¼ï½ã«ä¾çµ¦ãããThe PTS extractor 3520 extracts the PTS 141 included in the access unit and extracts the extracted PTS.
141 is stored in the PTS register 3530. The output of the PTS register 3530 is connected to the comparator 31a.
In addition, the PTS extractor 3520 is used by the access unit 16
The data obtained by removing the PSC 162a and the PTS 141 from 1a is supplied to the main video data decoder 40a.
ãï¼ï¼ï¼ï¼ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ãå¶å¾¡é¨ï¼ï¼ï¼ï¼
ãããã«å«ããå¶å¾¡é¨ï¼ï¼ï¼ï¼ã«ã¯ãå
¥åé¨ï¼ï¼ãä»ã
ã¦å
¥åãããå¶å¾¡ä¿¡å·ï¼ï¼ï¼ããã³ï¼ï¼ï¼ã¨ãæ¯è¼å¨ï¼
ï¼ï½ã®åºåã¨ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã¨ãå
¥
åããããå¶å¾¡é¨ï¼ï¼ï¼ï¼ã¯ããããã®å
¥åã«å¾ã£ã¦ã
ã¤ãã¼ãã«ä¿¡å·ï¼¥ï¼®ï¼ãENï¼ãçæãããThe read controller 35a includes a control unit 3510.
Further included. The control unit 3510 receives control signals 361 and 362 input via the input unit 50 and the comparator 3.
The output of 1a and the picture start code detection signal are input. The control unit 3510, according to these inputs,
The enable signals EN1 to EN4 are generated.
ãï¼ï¼ï¼ï¼ãï¼ï¼ï¼ãé常åçã¢ã¼ããã«ãããèªã¿åº
ãå¶å¾¡å¨ï¼ï¼ï½ã®åä½ å¶å¾¡é¨ï¼ï¼ï¼ï¼ã¯ãã¤ãã¼ãã«ä¿¡å·ï¼¥ï¼®ï¼ããã³ï¼¥ï¼®ï¼
ãã¤ã³ã¢ã¯ãã£ãã«ä¿ã¤ã(1) Operation of the read controller 35a in the "normal reproduction mode" The control unit 3510 controls the enable signals EN1 and EN2.
Keep inactive.
ãï¼ï¼ï¼ï¼ãèªã¿åºãã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ããã¦ã
ãå¤ã¯ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã«å¿çãã¦ï¼
ã«åæåããããThe value stored in the read register 3580 becomes 0 in response to the picture start code detection signal.
Is initialized to
ãï¼ï¼ï¼ï¼ãå¶å¾¡é¨ï¼ï¼ï¼ï¼ã¯ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼
ï¼ï½ã®ï¼ã¯ã¼ããèªã¿åºãæ¯ã«ãã¤ãã¼ãã«ä¿¡å·ï¼¥ï¼®ï¼
ãã¢ã¯ãã£ãã«ããããã®çµæãå ç®å¨ï¼ï¼ï¼ï¼ã®åºå
ã¯ãï¼ã¤ãã¤ã¤ã³ã¯ãªã¡ã³ãããã¦ãèªã¿åºãã¬ã¸ã¹ã¿
ï¼ï¼ï¼ï¼ã«æ ¼ç´ããããThe control unit 3510 controls the access unit 16
Each time one word of 1a is read, the enable signal EN3
Activate As a result, the output of the adder 3570 is incremented by 1 and stored in the read register 3580.
ãï¼ï¼ï¼ï¼ããã¼ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ããã¦ãã
å¤ã¯ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã«å¿çãã¦åºå
ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ããã¦ããå¤ã«åæåããããThe value stored in base register 3560 is initialized to the value stored in output register 3600 in response to the picture start code detection signal.
ãï¼ï¼ï¼ï¼ãå ç®å¨ï¼ï¼ï¼ï¼ã¯ããã¼ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼
ï¼ã®åºåã¨èªã¿åºãã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã®åºåã¨ãå ç®ã
ããThe adder 3590 has a base register 356.
The output of 0 and the output of the read register 3580 are added.
ãï¼ï¼ï¼ï¼ãå¶å¾¡é¨ï¼ï¼ï¼ï¼ã¯ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼
ï¼ï½ã®ï¼ã¯ã¼ããèªã¿åºãæ¯ã«ãã¤ãã¼ãã«ä¿¡å·ï¼¥ï¼®ï¼
ãã¢ã¯ãã£ãã«ããããã®çµæãå ç®å¨ï¼ï¼ï¼ï¼ã®åºå
ã¯ãåºåã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ããããåºåã¬ã¸ã¹ã¿
ï¼ï¼ï¼ï¼ã®åºåã¯ãã¢ãã¬ã¹ã¨ãã¦ä¸»æ åãã¼ã¿æ ¼ç´é¨
ï¼ï¼ï½ã«ä¾çµ¦ããããThe control unit 3510 includes the access unit 16
Each time one word of 1a is read, enable signal EN4
Activate As a result, the output of the adder 3590 is stored in the output register 3600. The output of the output register 3600 is supplied to the main video data storage unit 20a as an address.
ãï¼ï¼ï¼ï¼ãï¼ï¼ï¼ãï¼åéåçã¢ã¼ããã«ãããèªã¿
åºãå¶å¾¡å¨ï¼ï¼ï½ã®åä½ å¶å¾¡é¨ï¼ï¼ï¼ï¼ã¯ããã¯ãã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã«
å¿çãã¦ãã¤ãã¼ãã«ä¿¡å·ï¼¥ï¼®ï¼ãã¢ã¯ãã£ãã«ããã
ãã®çµæãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ã
ã¤ã³ã¿ï¼ï¼ï¼ã®å¤ãã¢ãã¬ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ã
ããã(2) Operation of the read controller 35a in the "double speed reproduction mode" The control unit 3510 activates the enable signal EN1 in response to the picture start code detection signal.
As a result, the value of the address pointer 171 of the access unit 161a-1 is stored in the address register 3540.
ãï¼ï¼ï¼ï¼ãå ç®å¨ï¼ï¼ï¼ï¼ã¯ããã¼ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼
ï¼ã®åºåã¨ã¢ãã¬ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã®åºåã¨ãå ç®ã
ããThe adder 3550 has a base register 356.
The output of 0 and the output of the address register 3540 are added.
ãï¼ï¼ï¼ï¼ãå¶å¾¡é¨ï¼ï¼ï¼ï¼ã¯ããã¯ãã£ã¹ã¿ã¼ãã³ã¼
ãæ¤åºä¿¡å·ã«å¿çãã¦ãã¤ãã¼ãã«ä¿¡å·ï¼¥ï¼®ï¼ãã¢ã¯ã
ã£ãã«ããããã®çµæãå ç®å¨ï¼ï¼ï¼ï¼ã®åºåã¯ããã¼
ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ãããããã®ãã¨ã¯ããã¼ã¹
ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ãããå¤ãããé常åçã¢ã¼
ããã®å ´åã«æ¯è¼ãã¦ãã¢ãã¬ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼
ç´ãããã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®å¤ã ãå¢å ãã¦ãã
ãã¨ãæå³ãããControl unit 3510 activates enable signal EN2 in response to the picture start code detection signal. As a result, the output of the adder 3550 is stored in the base register 3560. This means that the value stored in the base register 3560 is increased by the value of the address pointer 171 stored in the address register 3540 as compared with the case of the ânormal reproduction modeâ.
ãï¼ï¼ï¼ï¼ããé常åçã¢ã¼ããã®å ´åã¨åæ§ã«ãã¦ã
ãã¼ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã®åºåã¨èªã¿åºãã¬ã¸ã¹ã¿ï¼ï¼
ï¼ï¼ã®åºåã¨ãå ç®å¨ï¼ï¼ï¼ï¼ã«ãã£ã¦å ç®ãããåºå
ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ããããåºåã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼
ã¯ãã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³ã¿
ï¼ï¼ï¼ã®ã¢ãã¬ã¹ãåºåãã代ããã«ãã¢ã¯ã»ã¹ã¦ãã
ãï¼ï¼ï¼ï½âï¼ã®ã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã®ã¢ãã¬ã¹ã
åºåãããAs in the case of the "normal reproduction mode",
Output of base register 3560 and read register 35
The output of 80 is added by the adder 3590 and stored in the output register 3600. Output register 3600
Outputs the address of the address pointer 171 of the access unit 161a-2 instead of outputting the address of the address pointer 171 of the access unit 161a-1.
ãï¼ï¼ï¼ï¼ãï¼ï¼ï¼ãããªã¼ãºåçã¢ã¼ããã«ãããèª
ã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã®åä½ ãã¼ã¹ã¬ã¸ã¹ã¿ï¼ï¼ï¼ï¼ã«æ ¼ç´ããã¦ããå¤ã¯ããã¯ã
ã£ã¹ã¿ã¼ãã³ã¼ãæ¤åºä¿¡å·ã«å¿çãã¦åºåã¬ã¸ã¹ã¿ï¼ï¼
ï¼ï¼ã«æ ¼ç´ããã¦ããå¤ã«åæåãããããã®ã¾ã¾ç¶æ
ãããããã®ä»ã®åä½ã¯ããé常åçã¢ã¼ããã®å ´åã¨
åæ§ã§ãããããã«ãããåä¸ã®ã¢ã¯ã»ã¹ã¦ãããï¼ï¼
ï¼ï½ã®ãã¼ã¿ã主æ åãã¼ã¿ãã³ã¼ãï¼ï¼ï½ã«ä¾çµ¦ãã
ããã¨ã«ãªãã(3) Operation of the read controller 35a in "freeze reproduction mode" The value stored in the base register 3560 is output to the output register 36 in response to the picture start code detection signal.
It is not initialized to the value stored in 00 and is maintained as it is. Other operations are similar to those in the "normal reproduction mode". As a result, the same access unit 16
The data of 1a will be supplied to the main video data decoder 40a.
ãï¼ï¼ï¼ï¼ã次ã«ãã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ãå©ç¨ãã
èªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã®åæåããåä½ã説æãããNext, the synchronizing operation of the read controller 35a using the address pointer 171 will be described.
ãï¼ï¼ï¼ï¼ã宿½ã®å½¢æ
ï¼ã§ã¯ãSCRâï¼°ï¼´ï¼³æ¯è¼é¨
ï¼ï¼ã«ãããæ¯è¼å¨ï¼ï¼ï½ã®åºåãèªã¿åºãå¶å¾¡å¨ï¼ï¼
ï½ã«å
¥åããããä¸è¿°ããããã«ãæ¯è¼å¨ï¼ï¼ï½ã®åºå
ã¯ãSCRï¼ï¼ï¼ãã«ã¦ã³ãã¢ããããå¤ã¨ï¼°ï¼´ï¼³ï¼ï¼
ï¼ã®å¤ã¨ãæ¯è¼ããçµæã示ããIn the second embodiment, the output of the comparator 31a in the SCR-PTS comparison unit 31 is the read controller 35.
Input to a. As described above, the output of the comparator 31a is the value obtained by counting up the SCR 121 and the PTS14.
The result of having compared with the value of 1 is shown.
ãï¼ï¼ï¼ï¼ãSCRï¼ï¼ï¼ãã«ã¦ã³ãã¢ããããå¤ã¨ï¼°
ï¼´ï¼³ï¼ï¼ï¼ã®å¤ã¨ãæ¯è¼ããã¿ã¤ãã³ã°ã¯ãä¾ãã°ã次
ã®ããã«æ±ºããããããã®ãããªã¿ã¤ãã³ã°ãè¦å®ãã
ä¿¡å·ã¯ãæ¯è¼å¨ï¼ï¼ï½ãï¼ï¼ï½ã®å
é¨ã§çæããã¦ãã
ãããæ¯è¼å¨ï¼ï¼ï½ãï¼ï¼ï½ã®å¤é¨ããä¸ãããã¦ãã
ããThe value obtained by counting up the SCR 121 and P
The timing of comparison with the value of TS141 is determined as follows, for example. The signal defining such timing may be generated inside the comparators 31a to 31c or may be given from outside the comparators 31a to 31c.
ãï¼ï¼ï¼ï¼ãæ åã®å ´åãNTSCæ¹å¼ã®ã¨ããã¬ã¼ã
ã¿ã¤ãã³ã°ï¼ï¼ï½ï½ãPALæ¹å¼ã®ã¨ããã¬ã¼ã ã¿ã¤ã
ã³ã°ï¼ï¼ï½ï½ãFor video, the frame timing is 33 ms in the NTSC system and 25 ms in the PAL system.
ãï¼ï¼ï¼ï¼ãé³å£°ã®å ´åãï¼ï¼°ï¼¥ï¼§ï¼ã®ã¬ã¼ã¤ï¼ã®ã¨ã
ï¼ï¼ï¼ãµã³ãã«ãã¨ãï¼ï¼°ï¼¥ï¼§ï¼ã¬ã¼ã¤ï¼ã®ã¨ãï¼ï¼ï¼
ï¼ãµã³ãã«ãã¨ãIn the case of audio, every 384 samples for layer 1 of MPEG1, 115 for layer 1 of MPEG1
Every two samples.
ãï¼ï¼ï¼ï¼ãSCRï¼ï¼ï¼ãã«ã¦ã³ãã¢ããããå¤ãï¼°
ï¼´ï¼³ï¼ï¼ï¼ã®å¤ãã大ããã¨ãããã¨ã¯ããã®ï¼°ï¼´ï¼³ï¼
ï¼ï¼ãæ¿å
¥ãããã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã«å¯¾å¿ãã
ä¿¡å·ï¼ï¼ï¼ï½ãåºåãããã¹ãæå»ãéãã¦ãããã¨ã
æå³ãããæ¯è¼å¨ï¼ï¼ï½ã®åºåããSCRï¼ï¼ï¼ãã«ã¦
ã³ãã¢ããããå¤ãï¼°ï¼´ï¼³ï¼ï¼ï¼ã®å¤ãã大ããããã¨
ã示ãå ´åã«ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ããï¼åéå
çã¢ã¼ããã«ãããåä½ã¨åä¸ã®åä½ãå®è¡ããããã®
ãããªåä½ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ãã¢ã¯ã»ã¹ã¦ãã
ãï¼ï¼ï¼ï½ã®èªã¿åºããæå®ã®å²åã§ã¹ããããããã¨
ã«ãã£ã¦éæããããããã«ãããåºåå¶å¾¡å¨ï¼ï¼ï½ã
ãåºåãããä¿¡å·ï¼ï¼ï¼ï½ã®åºåã¿ã¤ãã³ã°ã®é
ããå
復ãããã¨ãå¯è½ã¨ãªããThe value obtained by counting up the SCR 121 is P
Being larger than the value of TS141 means that PTS1
This means that the time when the signal 200a corresponding to the access unit 161a in which 41 is inserted is to be output has passed. When the output of the comparator 31a indicates that the value obtained by counting up the SCR 121 is larger than the value of the PTS 141, the read controller 35a performs the same operation as that in the "double speed reproduction mode". Such an operation is achieved by the read controller 35a skipping the reading of the access unit 161a at a predetermined rate. This makes it possible to recover the delay in the output timing of the signal 200a output from the output controller 34a.
ãï¼ï¼ï¼ï¼ãSCRï¼ï¼ï¼ãã«ã¦ã³ãã¢ããããå¤ãï¼°
ï¼´ï¼³ï¼ï¼ï¼ã®å¤ããå°ããã¨ãããã¨ã¯ããã®ï¼°ï¼´ï¼³ï¼
ï¼ï¼ãæ¿å
¥ãããã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ã«å¯¾å¿ãã
ä¿¡å·ï¼ï¼ï¼ï½ãåºåãããã¹ãæå»ãæªã ã«å°æ¥ãã¦ã
ãªããã¨ãæå³ãããæ¯è¼å¨ï¼ï¼ï½ã®åºåããSCRï¼
ï¼ï¼ãã«ã¦ã³ãã¢ããããå¤ãï¼°ï¼´ï¼³ï¼ï¼ï¼ã®å¤ããå°
ããããã¨ã示ãå ´åã«ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã¯ã
ãããªã¼ãºåçã¢ã¼ããã«ãããåä½ã¨åä¸ã®åä½ãå®
è¡ããããã®ãããªåä½ã¯ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ãèª
ã¿åºãããã¢ãã¬ã¹ãã¤ã³ã¿ï¼ï¼ï¼ã«ç¶ããã¼ã¿ãç¹°ã
è¿ãèªã¿åºããã¨ã«ãã£ã¦éæããããããã«ãããå
ä¸ã®ã¢ã¯ã»ã¹ã¦ãããï¼ï¼ï¼ï½ãä»»æã®åæ°ã ãåºåã
ã¤ã¤ãåºåå¶å¾¡å¨ï¼ï¼ï½ããåºåãããä¿¡å·ï¼ï¼ï¼ï½ã®
åºåã¿ã¤ãã³ã°ã®ããã¿ã調æ´ãããã¨ãã§ãããThe value obtained by counting up the SCR 121 is P
It is smaller than the value of TS141 means that PTS1
This means that the time at which the signal 200a corresponding to the access unit 161a in which 41 is inserted should be output has not arrived yet. The output of the comparator 31a is "SCR1.
21 is smaller than the value of PTS 141 â, the read controller 35a
The same operation as that in the "freeze reproduction mode" is executed. Such an operation is achieved by the read controller 35a repeatedly reading the data following the read address pointer 171. As a result, the output timing of the signal 200a output from the output controller 34a can be adjusted while outputting the same access unit 161a any number of times.
ãï¼ï¼ï¼ï¼ããã®ããã«ã宿½ã®å½¢æ
ï¼ã«ããã°ãã¢ã
ã¬ã¹ãã¤ã³ã¿ãã¢ã¯ã»ã¹ã¦ãããã®æå®ã®ä½ç½®ã«æ¿å
¥ã
ããã¨ã«ãããç¹æ®åçãåæåããã容æã«å®ç¾ãã
ãã¨ãå¯è½ã¨ãªããAs described above, according to the second embodiment, by inserting the address pointer at a predetermined position of the access unit, special reproduction or synchronization can be easily realized.
ãï¼ï¼ï¼ï¼ããªããæ¬çºæã®ãã³ã¼ãè£
ç½®ãã½ãããã§
ã¢çã«å®ç¾ãããã¨ãå¯è½ã§ããã彿¥è
ã§ããã°ãå³
ï¼ã«ç¤ºããããã³ã¼ãè£
ç½®ï¼ããã³å³ï¼ã«ç¤ºããããã³
ã¼ãè£
ç½®ï¼ã®æ©è½ããã³åä½ãããããã¹ããªã¼ã ãå
¥
åããããã®ï¼©ï¼ï¼¯ãã¼ãã¨å¤é¨è¨æ¶å¨ã³ã³ããã¼ã©ã¨
ã¿ã¤ãã¼ã¨ãå
èµãããã¤ã¯ãã³ã³ãã¥ã¼ã¿ãç¨ãã¦ã½
ãããã§ã¢ã«ãã£ã¦å®ç¾å¯è½ã§ãããã¨ã容æã«çè§£ã
ããã¨ãã§ããã§ããããThe decoding device of the present invention can be realized as a software. Those skilled in the art will understand that the functions and operations of the decoding device 1 shown in FIG. 2 and the decoding device 2 shown in FIG. 8 include an I / O port for inputting a bitstream, an external storage controller, and a timer. It can be easily understood that it can be realized by software using a microcomputer.
ãï¼ï¼ï¼ï¼ã[0125]
ãçºæã®å¹æãæ¬çºæã«ããã°ããã³ã¼ããããä¿¡å·ã
åºåããã¿ã¤ãã³ã°ãè¦å®ãã第ï¼ã¿ã¤ãã³ã°æ
å ±ã¯ã
ãã¼ã¿ã®æå®ã®ä½ç½®ã«æ¿å
¥ããããããã«ããããã³ã¼
ãè£
ç½®ã¯ãCPUã®å©ããåãããã¨ãªãããã³ã¼ãã
ããä¿¡å·ãåºåããã¿ã¤ãã³ã°ã®åæåãããå®è¡ãã
ãã¨ãã§ããããã®çµæãCPUã®è² è·ã¯å°ãããªããAccording to the present invention, the first timing information defining the timing for outputting the decoded signal is:
It is inserted at a predetermined position in the data. This allows the decoding device to perform timing synchronization of outputting the decoded signal without the aid of the CPU. As a result, the load on the CPU is reduced.
ãï¼ï¼ï¼ï¼ãã¾ãããã³ã¼ãè£
ç½®ã¯ãããããã第ï¼ã¿
ã¤ãã³ã°æ
å ±ãæ½åºãããããã«ããããã®ããããã
ããã¡ã¡ã¢ãªã«æ ¼ç´ãããã¨ãçããããã«ããããã
ãã¡ã¡ã¢ãªã«æ ¼ç´ããããã¼ã¿éã忏ãããã¨ãã§ã
ãããã®çµæããããã¡ã¡ã¢ãªã®ãµã¤ãºãå°ããããã
ã¨ãã§ãããThe decoding device also extracts the first timing information from the header. This saves storing the header in the buffer memory. As a result, the amount of data stored in the buffer memory can be reduced. As a result, the size of the buffer memory can be reduced.
ãï¼ï¼ï¼ï¼ãã¾ããã¢ãã¬ã¹ãã¤ã³ã¿ããã¼ã¿ã®æå®ã®
ä½ç½®ã«æ¿å
¥ãããã¨ã«ãããç¹æ®åçãåæåããã容
æã«å®ç¾ãããã¨ãå¯è½ã¨ãªããAlso, by inserting the address pointer at a predetermined position of the data, special reproduction or synchronization can be easily realized.
ãå³é¢ã®ç°¡åãªèª¬æã[Brief description of drawings]
ãå³ï¼ãDVDåçè£ ç½®ï¼ï¼ï¼ã®æ§æã示ãå³ã§ãããFIG. 1 is a diagram showing a configuration of a DVD reproducing device 300.
ãå³ï¼ãæ¬çºæã®å®æ½ã®å½¢æ
ï¼ã®ãã³ã¼ãè£
ç½®ï¼ã®æ§æ
ã示ãå³ã§ãããFIG. 2 is a diagram showing a configuration of a decoding device 1 according to the first embodiment of the present invention.
ãå³ï¼ããã³ã¼ãè£
ç½®ï¼ã«å
¥åããããããã¹ããªã¼ã
ï¼ï¼ï¼ã®æ¨¡å¼çãªæ§é ã示ãå³ã§ãããFIG. 3 is a diagram showing a schematic structure of a bit stream 100 input to a decoding device 1.
ãå³ï¼ãï¼ï½ï¼ã¯ãããã¯ãããï¼ï¼ï¼ã®ä¸è¬çãªã·ã³
ã¿ãã¯ã¹ã¨ããã®ã·ã³ã¿ãã¯ã¹ã«å¾ã£ããããé
åã®ä¾
ã¨ã示ãå³ãï¼ï½ï¼ã¯ãPESãããï¼ï¼ï¼ã®ä¸è¬çãª
ã·ã³ã¿ãã¯ã¹ã¨ããã®ã·ã³ã¿ãã¯ã¹ã«å¾ã£ããããé
å
ã®ä¾ã¨ã示ãå³ã§ããã4A is a diagram showing a general syntax of a pack header 120 and an example of a bit arrangement according to the syntax, and FIG. 4B is a general syntax of a PES header 140. FIG. 3 is a diagram showing an example of a bit array according to the syntax.
ãå³ï¼ããããã¡ã¡ã¢ãªï¼ï¼ã®ä¸»æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼
ï½ã«æ ¼ç´ããã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã®æ§é ã示ãå³ã§
ãããFIG. 5 is a main video data storage unit 20 of a buffer memory 20.
It is a figure which shows the structure of the main image data 160a stored in a.
ãå³ï¼ããããã¹ããªã¼ã åè§£å¨ï¼ï¼ã®æ§æã示ãå³ã§
ãããFIG. 6 is a diagram showing a configuration of a bitstream decomposer 10.
ãå³ï¼ããã©ã¼ããã¿ï¼ï¼ã®æ§æã示ãå³ã§ãããFIG. 7 is a diagram showing a configuration of a formatter 55.
ãå³ï¼ãæ¬çºæã®å®æ½ã®å½¢æ
ï¼ã®ãã³ã¼ãè£
ç½®ï¼ã®æ§æ
ã示ãå³ã§ãããFIG. 8 is a diagram showing a configuration of a decoding device 2 according to a second embodiment of the present invention.
ãå³ï¼ããããã¡ã¡ã¢ãªï¼ï¼ã®ä¸»æ åãã¼ã¿æ ¼ç´é¨ï¼ï¼
ï½ã«æ ¼ç´ããã主æ åãã¼ã¿ï¼ï¼ï¼ï½ã®æ§é ã示ãå³ã§
ãããFIG. 9 is a main video data storage unit 20 of a buffer memory 20.
It is a figure which shows the structure of the main image data 160a stored in a.
ãå³ï¼ï¼ããã©ã¼ããã¿ï¼ï¼ï¼¡ã®æ§æã示ãå³ã§ãããFIG. 10 is a diagram showing a configuration of a formatter 55A.
ãå³ï¼ï¼ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã«ããï¼åéåçåä½
ã説æããããã®å³ã§ãããFIG. 11 is a diagram for explaining a double speed reproduction operation by the read controller 35a.
ãå³ï¼ï¼ãèªã¿åºãå¶å¾¡å¨ï¼ï¼ï½ã®æ§æã示ãå³ã§ã
ããFIG. 12 is a diagram showing a configuration of a read controller 35a.
ï¼ï¼ãï¼ï¼ ãããã¹ããªã¼ã åè§£å¨ ï¼ï¼ ãããã¡ã¡ã¢ãª ï¼ï¼ ã³ã³ããã¼ã© ï¼ï¼ SCRâï¼°ï¼´ï¼³æ¯è¼é¨ ï¼ï¼ãï¼ï¼ èªã¿åºãå¶å¾¡é¨ ï¼ï¼ åºåå¶å¾¡é¨ ï¼ï¼ ã¨ãªã¡ã³ã¿ãªãã³ã¼ãé¨ ï¼ï¼ å ¥åé¨ ï¼ï¼ ã¹ã¿ã¼ãã³ã¼ãæ¤åºå¨ ï¼ï¼ åè§£å¨ ï¼ï¼ SCRæ½åºå¨ ï¼ï¼ ï¼°ï¼´ï¼³æ½åºå¨ ï¼ï¼ ãã©ã¼ããã¿Â 10, 11 bit stream decomposer 20 buffer memory 30 controller 31 SCR-PTS comparison unit 33, 35 read control unit 34 output control unit 40 elementary decoder unit 50 input unit 51 start code detector 52 decomposer 53 SCR extractor 54 PTS Extractor 55 Formatter
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4