å ·ä½å®æ½æ¹å¼ Detailed ways
为äºè§£å³ç°æææ¯å¯¹åå§ä¿¡å·çæ´ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯è¿è¡åµå ¥å¼ç¼ç ï¼é æå¨ç¼ç èµæºæéæ¶ï¼ç¼ç éå精度è¾ä½ï¼è§£ç åºçä¿¡å·è´¨éè¾å·®çé®é¢ï¼æ¬åæå®æ½ä¾æä¾ä¸ç§åµå ¥å¼ç¼è§£ç æ¹æ³åè£ ç½®ãIn order to solve the problem that the prior art performs embedded coding on the entire time-domain or frequency-domain envelope information of the original signal, when the coding resources are limited, the coding and quantization precision is low, and the decoded signal quality is poor, the embodiment of the present invention Provided are an embedded codec method and device.
æ¬åæçä¸ä¸ªå®æ½ä¾ç¼ç æ¹å æ¬ï¼An encoding side of an embodiment of the present invention includes:
å°åå§ä¿¡å·çæ¶åæè é¢åå ç»ä¿¡æ¯åå为第ä¸é¨åå第äºé¨åãThe time-domain or frequency-domain envelope information of the original signal is divided into a first part and a second part.
å»ºç«æè¿°ç¬¬ä¸é¨åå第äºé¨åä¹é´ç代æ¢å ³ç³»ï¼æè¿°ä»£æ¢å ³ç³»ç¨äºè§£ç æ¶å°ç¬¬ä¸é¨å代æ¢å¾å°ç¬¬äºé¨åãA substitution relationship between the first part and the second part is established, and the substitution relationship is used for substituting the first part to obtain the second part during decoding.
对æè¿°ç¬¬ä¸é¨åè¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬ä¸ç çå±ãPerform embedded coding on the first part to generate a first code rate layer.
æ¬åæçå¦ä¸ä¸ªå®æ½ä¾è§£ç æ¹å æ¬ï¼Another embodiment of the present invention, the decoder includes:
对第ä¸ç çå±è¿è¡è§£ç ï¼éæåå§ä¿¡å·ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ãThe first code rate layer is decoded, and the first part of time-domain or frequency-domain envelope information of the original signal is reconstructed.
æ ¹æ®æè¿°éæç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼ä»¥åæ ¹æ®ç¼ç æ¹å»ºç«ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä¸ç¬¬äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä¹é´ç代æ¢å ³ç³»ï¼éæåå§ä¿¡å·ç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ãAccording to the reconstructed first part of time domain or frequency domain envelope information, and according to the substitution between the first part of time domain or frequency domain envelope information and the second part of time domain or frequency domain envelope information established by the encoding party Reconstruct the second part of the time-domain or frequency-domain envelope information of the original signal.
æ ¹æ®æè¿°éæç第ä¸é¨åå第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼éæåå§ä¿¡å·ãReconstructing the original signal according to the reconstructed first part and the second part of time-domain or frequency-domain envelope information.
å¦å¾1æç¤ºï¼æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç æ¹æ³ï¼å æ¬ï¼As shown in Figure 1, the embedded coding method provided by the embodiment of the present invention includes:
æ¥éª¤101ï¼å°åå§ä¿¡å·çæ¶åæè é¢åå ç»ä¿¡æ¯åå为第ä¸é¨åå第äºé¨åã Step 101, divide time-domain or frequency-domain envelope information of an original signal into a first part and a second part.
卿¬å®æ½ä¾ä¸ï¼æè¿°ç¬¬ä¸é¨åå¯ä»¥ä¸ºåå§ä¿¡å·çæ¶åæè é¢åå ç»ä¿¡æ¯ç奿°å ç»é¨åï¼æè¿°ç¬¬äºé¨åå¯ä»¥ä¸ºåå§ä¿¡å·çæ¶åæè é¢åå ç»ä¿¡æ¯çå¶æ°å ç»é¨åï¼æè ï¼æè¿°ç¬¬ä¸é¨åå¯ä»¥ä¸ºåå§ä¿¡å·çæ¶åæè é¢åå ç»ä¿¡æ¯çå¶æ°å ç»é¨åï¼æè¿°ç¬¬äºé¨åå¯ä»¥ä¸ºåå§ä¿¡å·çæ¶åæè é¢åå ç»ä¿¡æ¯ç奿°å ç»é¨åãå¨å®é ç使ç¨è¿ç¨ä¸ï¼è¿å¯ä»¥éè¿å ¶ä»æ¹æ³å¯¹æè¿°åå§ä¿¡å·çæ¶åæè é¢åå ç»ä¿¡æ¯è¿è¡ååï¼æ¤å¤ä¸åèµè¿°ãIn this embodiment, the first part may be an odd-numbered envelope part of the time-domain or frequency-domain envelope information of the original signal, and the second part may be an even-numbered envelope part of the time-domain or frequency-domain envelope information of the original signal Alternatively, the first part may be an even envelope part of the time domain or frequency domain envelope information of the original signal, and the second part may be an odd envelope part of the time domain or frequency domain envelope information of the original signal part. During actual use, other methods may also be used to divide the time-domain or frequency-domain envelope information of the original signal, which will not be repeated here.
æ¥éª¤102ï¼å»ºç«æè¿°ç¬¬ä¸é¨åå第äºé¨åä¹é´ç代æ¢å ³ç³»ï¼æè¿°ä»£æ¢å ³ç³»ç¨äºè§£ç æ¶å°ç¬¬ä¸é¨å代æ¢å¾å°ç¬¬äºé¨åã Step 102, establishing a substitution relationship between the first part and the second part, and the substitution relationship is used for substituting the first part to obtain the second part during decoding.
æè¿°ç¬¬ä¸é¨åå第äºé¨åä¹é´ç代æ¢å ³ç³»å¯ä»¥ä¸ºï¼ç¬¬äºé¨åçæ¶åæè é¢åå ç»ä¿¡æ¯çä»·äºä¸ä¹ç¸é»ç第ä¸é¨åçæ¶åæè é¢åå ç»ä¿¡æ¯çå¹³åå¼ï¼å½ç¶ï¼æè¿°ç¬¬äºé¨åå第ä¸é¨åä¹é´ç代æ¢å ³ç³»è¿å¯ä»¥ä¸ºå ¶ä»æ åµï¼æ¤å¤ä¸å¯¹æ¯ç§æ åµè¿è¡ä¸ä¸ä»ç»ãThe substitution relationship between the first part and the second part may be: the time-domain or frequency-domain envelope information of the second part is equivalent to the average of the time-domain or frequency-domain envelope information of the adjacent first part value; of course, the substitution relationship between the second part and the first part can also be other situations, and each situation will not be introduced here.
æ¥éª¤103ï¼å¯¹æè¿°ç¬¬ä¸é¨åè¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬ä¸ç çå±ã Step 103, perform embedded coding on the first part to generate a first code rate layer.
æè¿°æ¥éª¤103å¯ä»¥éç¨ç°æææ¯æä¾çç¼ç æ¹æ³ï¼å¦æ ééåå夫æ¼ç¼ç çï¼å¯¹ç¬¬ä¸é¨åä¸çæ¯ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯è¿è¡åµå ¥å¼ç¼ç ï¼ä¸ºäºè¾¾å°èçç¼ç æ¯ç¹èµæºçç®çï¼æè¿°æ¥éª¤103è¿å¯ä»¥éç¨å¦ä¸æ¹æ¡å¯¹ç¬¬ä¸é¨åè¿è¡åµå ¥å¼ç¼ç ï¼å æ¬ï¼The step 103 can use the coding method provided by the prior art, such as scalar quantization Huffman coding, etc., to perform embedded coding on each time domain or frequency domain envelope information in the first part; in order to save coding bit resources Purpose, said step 103 can also adopt the following scheme to carry out embedded coding to the first part, including:
ä»æè¿°ç¬¬ä¸é¨åç第äºä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯å¼å§ï¼è·åå½åæ¶åæè é¢åå ç»ä¿¡æ¯ç¸å¯¹äºåä¸ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯ç第ä¸å·®åä¿¡å·ï¼Starting from the second time-domain or frequency-domain envelope information of the first part, obtain a first differential signal of the current time-domain or frequency-domain envelope information relative to the previous time-domain or frequency-domain envelope information;
对æè¿°ç¬¬ä¸é¨åç第ä¸ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯è¿è¡åµå ¥å¼ç¼ç ï¼performing embedded encoding on the first time-domain or frequency-domain envelope information of the first part;
对è·åçä¸ä¸ªä»¥ä¸ç第ä¸å·®åä¿¡å·è¿è¡åµå ¥å¼ç¼ç ï¼performing embedded encoding on the obtained one or more first differential signals;
æ ¹æ®ä¸è¿°ç¼ç ç»æçæç¬¬ä¸ç çå±ãGenerate the first code rate layer according to the above encoding result.
卿¬å®æ½ä¾ä¸ï¼æ¥éª¤103对ä¸ä¸ªä»¥ä¸ç第ä¸å·®åä¿¡å·è¿è¡åµå ¥å¼ç¼ç å ·ä½å¯ä»¥ä¸ºå¯¹ä¸ä¸ªä»¥ä¸ç第ä¸å·®åä¿¡å·è¿è¡åµå ¥å¼çµç¼ç ãIn this embodiment, performing embedded encoding on more than one first differential signal in step 103 may specifically be performing embedded entropy encoding on more than one first differential signal.
ç±äºçµç¼ç è½å¤æ ¹æ®å¾ ç¼ç åºåä¸åç§ä¿¡å·åºç°çæ¦çåå¸è§å¾å»ºç«ç 表ï¼å¯¹åºç°æ¦çé«çä¿¡å·åé ç¼ç æ¯ç¹å°çç åï¼å¯¹åºç°æ¦çä½çä¿¡å·åé ç¼ç æ¯ç¹å¤çç åï¼æä»¥æè¿°æ¥éª¤103å©ç¨åµå ¥å¼çµç¼ç 对æè¿°ä¸ä¸ªä»¥ä¸ç第ä¸å·®åä¿¡å·è¿è¡ç¼ç è½å¤ä½¿å¹³åç¼ç æ¯ç¹è¾å°ï¼èçç¼ç æ¯ç¹èµæºãSince entropy coding can establish a code table according to the probability distribution of various signals in the sequence to be encoded, assign codewords with fewer coding bits to signals with high occurrence probability, and assign codewords with more coding bits to signals with low occurrence probability, so In step 103, encoding the one or more first differential signals by using embedded entropy coding can reduce the number of coding bits on average and save coding bit resources.
å¦å¾1æç¤ºï¼ä¸ºäºè¿ä¸æ¥æé«ç¼ç éåç²¾åº¦ï¼æè¿°æ¥éª¤102ä¹åï¼è¿å¯ä»¥å æ¬ï¼As shown in Figure 1, in order to further improve the encoding and quantization accuracy, after the step 102, it may also include:
æ¥éª¤104ï¼è·åæè¿°ç¬¬äºé¨åä¸ç¨ç¬¬ä¸é¨å代æ¢åç第äºé¨åä¹é´ç第äºå·®åä¿¡å·ã Step 104, acquiring a second differential signal between the second part and the second part replaced by the first part.
åæè¿°æ¥éª¤103ä¹åï¼è¿å¯ä»¥å æ¬ï¼Then after the step 103, it may also include:
æ¥éª¤105ï¼å¯¹æè¿°ç¬¬äºå·®åä¿¡å·è¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬äºç çå±ã为äºèçæ¯ç¹èµæºï¼æè¿°æ¥éª¤105å ·ä½å¯ä»¥ä¸ºå¯¹æè¿°ç¬¬äºå·®åä¿¡å·è¿è¡åµå ¥å¼çµç¼ç ã Step 105, perform embedded coding on the second differential signal to generate a second code rate layer. In order to save bit resources, the step 105 may specifically be performing embedded entropy coding on the second differential signal.
卿¬å®æ½ä¾ä¸ï¼æè¿°æ¥éª¤105ä¸ä» å¯ä»¥å°æè¿°ç¬¬äºå·®åä¿¡å·ç¼ç å¨ç¬¬äºç çå±ï¼å½æè¿°æ¥éª¤103ç¼ç åï¼ç¬¬ä¸ç çå±è¿æå©ä½çç¼ç æ¯ç¹èµæºæ¶ï¼æè¿°æ¥éª¤105è¿å¯ä»¥å°ä¸é¨å第äºå·®åä¿¡å·ç¼ç å¨ç¬¬ä¸ç çå±ï¼ç¶åå°å©ä½ç第äºå·®åä¿¡å·ç¼ç å¨ç¬¬äºç çå±ï¼In this embodiment, the step 105 can not only encode the second differential signal in the second code rate layer, but when the first code rate layer has remaining coding bit resources after the step 103 is encoded, the The above step 105 can also encode a part of the second differential signal in the first code rate layer, and then encode the remaining second differential signal in the second code rate layer;
为达å°ä¸è¿°ç®çï¼æè¿°æ¥éª¤104ä¹åï¼è¿å¯ä»¥å æ¬ï¼å°æè¿°ç¬¬äºå·®åä¿¡å·ååæç¬¬ä¸åé¨åå第äºåé¨åï¼åæè¿°æ¥éª¤105å ·ä½å¯ä»¥ä¸ºï¼In order to achieve the above purpose, after the step 104, it may also include: dividing the second differential signal into a first sub-section and a second sub-section; then the step 105 may specifically be:
对æè¿°ç¬¬ä¸åé¨åè¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬ä¸ç çå±ï¼Perform embedded coding on the first sub-part to generate a first code rate layer;
对æè¿°ç¬¬äºåé¨åè¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬äºç çå±ãPerform embedded coding on the second sub-part to generate a second code rate layer.
æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç æ¹æ³ï¼ç±äºé¢å 建ç«äºç¬¬ä¸é¨åå第äºé¨åä¹é´ç代æ¢å ³ç³»ï¼æä»¥ç¼ç 端å¯ä»¥åªå¯¹åå§ä¿¡å·æ¶åæè é¢åå ç»ä¿¡æ¯ç第ä¸é¨åè¿è¡åµå ¥å¼ç¼ç ï¼è§£å³äºç°æææ¯å¯¹åå§ä¿¡å·çæ´ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯è¿è¡ç¼ç ï¼é æç¼ç æ¯ç¹èµæºæéæ¶ï¼æè¿°æ¶åæè é¢åå ç»ä¿¡æ¯çéå精度è¾ä½çé®é¢ãæ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç æ¹æ³ï¼å¨ç¼ç æ¯ç¹èµæºæéæ¶ï¼ä¹è½å¤å¯¹æè¿°ç¬¬ä¸é¨åä¿¡æ¯è¿è¡è¾ç²¾ç¡®çéåï¼å¹¶ä¸ï¼æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç æ¹æ³ï¼é¤å¯¹ç¬¬ä¸é¨åè¿è¡åµå ¥å¼ç¼ç å¤ä¸å ç¨é¢å¤çç¼ç æ¯ç¹èµæºï¼æè¿°ç¬¬ä¸é¨åä¸ç¬¬äºé¨åä¹é´ç代æ¢å ³ç³»ç®æ³ç®åãç¨³å®æ§é«ãç±äºæ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç æ¹æ³ï¼è¿å¯ä»¥å¯¹æè¿°ç¬¬äºå·®åä¿¡æ¯è¿è¡åµå ¥å¼ç¼ç ï¼æä»¥ä½¿å¾æ¬æ¹æ³ç¼ç æææ´å¥½ï¼ç¼ç è´¨éæ´é«ãIn the embedded encoding method provided by the embodiment of the present invention, since the substitution relationship between the first part and the second part is established in advance, the encoding end can only embed the first part of the original signal time domain or frequency domain envelope information. The encoding solves the problem that the prior art encodes the entire time-domain or frequency-domain envelope information of the original signal, resulting in limited encoding bit resources, and the quantization accuracy of the time-domain or frequency-domain envelope information is low. The embedded coding method provided by the embodiment of the present invention can also perform more accurate quantization on the first part of information when the coding bit resources are limited; and, the embedded coding method provided by the embodiment of the present invention, in addition to performing The embedded coding does not occupy additional coding bit resources, and the algorithm of the substitution relationship between the first part and the second part is simple and highly stable. Since the embedded encoding method provided by the embodiment of the present invention can also perform embedded encoding on the second difference information, the encoding effect of this method is better and the encoding quality is higher.
å¦å¾2æç¤ºï¼æ¬åæå®æ½ä¾æä¾çåµå ¥å¼è§£ç æ¹æ³ï¼å æ¬ï¼As shown in Figure 2, the embedded decoding method provided by the embodiment of the present invention includes:
æ¥éª¤201ï¼å¯¹ç¬¬ä¸ç çå±è¿è¡è§£ç ï¼éæåå§ä¿¡å·ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ãStep 201: Decode the first code rate layer, and reconstruct the first part of time-domain or frequency-domain envelope information of the original signal.
ä¸å¾1æç¤ºçæ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç æ¹æ³ç¸å¯¹åºå°ï¼æ¬å®æ½ä¾æè¿°ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä¸ºåå§ä¿¡å·æ¶åæè é¢åç奿°å ç»ä¿¡æ¯ï¼æè åå§ä¿¡å·æ¶åæè é¢åçå¶æ°å ç»ä¿¡æ¯ãCorresponding to the embedded coding method provided by the embodiment of the present invention shown in FIG. 1 , the first part of time domain or frequency domain envelope information described in this embodiment is the odd envelope information of the original signal time domain or frequency domain; Or the even envelope information of the original signal in time domain or frequency domain.
卿¬å®æ½ä¾ä¸ï¼æè¿°æ¥éª¤201å ·ä½å¯ä»¥å æ¬ï¼In this embodiment, the step 201 may specifically include:
对第ä¸ç çå±è¿è¡è§£ç ï¼è·å¾åå§ä¿¡å·ç¬¬ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ç第ä¸ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯ä»¥åä¸ä¸ªä»¥ä¸ç第ä¸å·®åä¿¡æ¯ï¼Decoding the first code rate layer to obtain the first time domain or frequency domain envelope information of the first part of the time domain or frequency domain envelope information of the original signal and more than one first difference information;
æ ¹æ®æè¿°ç¬¬ä¸ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯ä»¥å第ä¸å·®åä¿¡æ¯ï¼éææè¿°ç¬¬ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯çåç»æ¶åæè é¢åå ç»ä¿¡æ¯ãReconstruct subsequent time domain or frequency domain envelope information of the first part of time domain or frequency domain envelope information according to the first time domain or frequency domain envelope information and the first difference information.
æ¥éª¤202ï¼æ ¹æ®æè¿°éæç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼ä»¥åæ ¹æ®ç¼ç æ¹å»ºç«ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä¸ç¬¬äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä¹é´ç代æ¢å ³ç³»ï¼éæåå§ä¿¡å·ç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ãå ¶ä¸ï¼ä»£æ¢å ³ç³»å¯ä»¥ç±ç¼ç æ¹åè§£ç æ¹é¢å ååï¼ä¹å¯ä»¥ä¸ºé¢å 设å®ç代æ¢å ³ç³»ãæ¬å®æ½ä¾æè¿°ç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä¸ºåå§ä¿¡å·æ¶åæè é¢åçå¶æ°å ç»ä¿¡æ¯ï¼æè åå§ä¿¡å·æ¶åæè é¢åç奿°å ç»ä¿¡æ¯ï¼ Step 202, according to the reconstructed first part of time-domain or frequency-domain envelope information, and according to the difference between the first part of time-domain or frequency-domain envelope information and the second part of time-domain or frequency-domain envelope information established by the encoder The substitution relationship of the original signal reconstructs the second part of the time-domain or frequency-domain envelope information of the original signal. Wherein, the substitution relationship may be pre-negotiated by the encoding side and the decoding side, or may be a preset substitution relationship. The second part of time-domain or frequency-domain envelope information described in this embodiment is even-numbered envelope information in the time-domain or frequency-domain of the original signal; or odd-numbered envelope information in the time-domain or frequency-domain of the original signal;
æè¿°æ¥éª¤202å ·ä½å¯ä»¥æ ¹æ®å¦å¾1æç¤ºçæ¥éª¤102ä¸å»ºç«ç第ä¸é¨åä¸ç¬¬äºé¨åä¹é´ç代æ¢å ³ç³»éæåå§ä¿¡å·ç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ãThe step 202 may specifically reconstruct the time-domain or frequency-domain envelope information of the second part of the original signal according to the substitution relationship between the first part and the second part established in step 102 as shown in FIG. 1 .
æ¥éª¤203ï¼æ ¹æ®æè¿°éæç第ä¸é¨åå第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼éæåå§ä¿¡å·ãStep 203: Reconstruct the original signal according to the reconstructed first part and the second part of time-domain or frequency-domain envelope information.
卿¬å®æ½ä¾ä¸ï¼å½æè¿°ç¬¬ä¸ç çå±ä¸å å«ç¬¬äºå·®åä¿¡æ¯ï¼æè å½è§£ç ç«¯æ¥æ¶å°çç æµä¸å å«ç¬¬äºç ç屿¶ï¼å¦å¾2æç¤ºï¼æè¿°æ¥éª¤202ä¹åï¼è¿å¯ä»¥å æ¬ï¼In this embodiment, when the first code rate layer contains the second differential information, or when the code stream received by the decoding end contains the second code rate layer, as shown in FIG. 2 , after the step 202 , which can also include:
æ¥éª¤204ï¼è·å第äºå·®åä¿¡æ¯ãå ·ä½ä¸ºï¼ä»ç¬¬äºç çå±è·å第äºå·®åä¿¡æ¯ï¼æè ä»å½æè¿°ç¬¬ä¸ç çå±ä¸å å«ç¬¬äºå·®åä¿¡æ¯æ¶ï¼ä¹å¯ä»¥ä»ç¬¬ä¸ç çå±ä¸è·å第äºå·®åä¿¡æ¯ã Step 204, acquiring second difference information. Specifically, the second difference information is obtained from the second code rate layer, or when the first code rate layer includes the second difference information, the second difference information may also be obtained from the first code rate layer.
æ¥éª¤205ï¼æ ¹æ®æè¿°ç¬¬äºå·®åä¿¡å·ä»¥åæè¿°éæç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼çæå¢å¼ºç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ãStep 205: Generate enhanced second part of time domain or frequency domain envelope information according to the second differential signal and the reconstructed second part of time domain or frequency domain envelope information.
åæè¿°æ¥éª¤203å ·ä½å¯ä»¥ä¸ºï¼Then the step 203 can specifically be:
å½æè¿°ç æµä¸å å«ç¬¬äºç ç屿¶ï¼æ ¹æ®æè¿°éæç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯åå¢å¼ºç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼çæéæçåå§ä¿¡å·ï¼When the code stream contains the second code rate layer, according to the reconstructed first part of the time domain or frequency domain envelope information and the enhanced second part of the time domain or frequency domain envelope information, generate the reconstructed original Signal;
å½æè¿°ç æµä¸ä» å å«ç¬¬ä¸ç ç屿¶ï¼æ ¹æ®æè¿°éæç第ä¸é¨åå第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä»¥åå¢å¼ºç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼éæåå§ä¿¡å·ãWhen the code stream only includes the first code rate layer, according to the reconstructed first part and second part of time domain or frequency domain envelope information and the enhanced second part of time domain or frequency domain envelope information, Reconstruct the original signal.
æ¬åæå®æ½ä¾æä¾çåµå ¥å¼è§£ç æ¹æ³ï¼å¨è§£ç åºåå§ä¿¡å·ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä»¥åï¼å¯ä»¥æ ¹æ®é¢å 设置ç代æ¢å ³ç³»éæåºåå§ä¿¡å·ç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼è½å¤éåºæ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç æ¹æ³ï¼å¹¶ä¸ï¼è½å¤éæåºè´¨éè¾å¥½çåå§ä¿¡å·ãThe embedded decoding method provided by the embodiment of the present invention can reconstruct the second part of the original signal in the time domain or frequency domain according to the preset substitution relationship after decoding the first part of the time domain or frequency domain envelope information of the original signal. The domain envelope information can adapt to the embedded coding method provided by the embodiment of the present invention, and can reconstruct an original signal with better quality.
为äºä½¿æ¬é¢åææ¯äººåè½å¤æ´æ¸ æ¥å°è§£ç æ¬åæå®æ½ä¾æä¾çææ¯æ¹æ¡ï¼ä¸é¢ç»åå ·ä½ç宿½ä¾å¯¹ä»¥ä¸æè¿°çæ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼è§£ç æ¹æ³å详ç»è¯´æãIn order to enable those skilled in the art to decode the technical solutions provided by the embodiments of the present invention more clearly, the embedded encoding and decoding methods provided by the above-mentioned embodiments of the present invention will be described in detail below in conjunction with specific embodiments.
宿½ä¾1ï¼è¶ 宽带åµå ¥å¼ç¼ç å¨çè¾å ¥ä¿¡å·æ¯32kHzéæ ·çï¼å¸¦å®½ä¸º16kHzï¼å¤ç帧é¿ä¸º20msï¼éç¨æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼è§£ç æ¹æ³å¯¹è¶ 宽带é¨åçé¢åå ç»è¿è¡å¤çï¼è¶ 宽带ç çå±ç¼ç æ¯ç¹èµæºæéãEmbodiment 1: the input signal of the ultra-wideband embedded encoder is 32kHz sampling rate, the bandwidth is 16kHz, and the processing frame length is 20ms, and the frequency-domain envelope of the ultra-wideband part is carried out using the embedded codec method provided by the embodiment of the present invention Processing, UWB code rate layer coding bit resources are limited.
ç¼ç 端ï¼Encoder:
第ä¸ï¼è·åæè¿°è¾å ¥ä¿¡å·è¶ 宽带é¨åçé¢åå ç»ä¿¡æ¯ãFirst, the frequency-domain envelope information of the ultra-wideband part of the input signal is acquired.
æè¿°è¾å ¥ä¿¡å·å¨8è³16kHzé¢å¸¦å çéæ ·ç¹ä¸ªæ°ä¸º320个 ( 16 - 8 16 ( 32 kHz × 20 ms ) = 320 ) , 8è³16kHzé¢å¸¦å çæ¶åä¿¡å·ä¸º{y_hi(0)ï¼y_hi(1)ï¼â¦â¦ï¼y_hi(319)}ï¼ç»ä¿®æ£ç离æ£ä½å¼¦åæ¢(MDCT)å¾å°è¯¥é¢å¸¦å çé¢åä¿¡å·{y_swb(0)ï¼y_swb(1)ï¼â¦â¦ï¼y_swb(319)}ï¼ç±äºè¶ 宽带åµå ¥å¼ç¼ç å¨çè¶ å®½å¸¦é¨åè¿å¤ç8è³14kHzé¢å¸¦å çä¿¡å·ï¼æä»¥ä»è·å¾é¢åä¿¡å·ä¸æå该8è³14kHzé¢å¸¦å çé¢åä¿¡å·{y_swb(0)ï¼y_swb(1)ï¼â¦â¦ï¼y_swb(239)}ï¼å°æè¿°8è³14kHzé¢å¸¦å çé¢åä¿¡å·å为N个å带ï¼å¨æ¬å®æ½ä¾ä¸æè¿°Nï¼15ï¼è·å¾ä¸ç»é¢åå ç»ä¿¡æ¯{enve(0)ï¼enve(1)ï¼â¦â¦ï¼enve(14)}ãThe number of sampling points of the input signal in the 8-16kHz frequency band is 320 ( 16 - 8 16 ( 32 kHz × 20 ms ) = 320 ) , The time domain signal in the 8 to 16kHz frequency band is {y_hi(0), y_hi(1),...,y_hi(319)}, and the frequency domain signal {y_swb( 0), y_swb(1), ..., y_swb(319)}, since the UWB part of the UWB embedded encoder processes signals in the 8 to 14kHz frequency band, the 8 to 14kHz is extracted from the obtained frequency domain signal The frequency domain signal {y_swb(0), y_swb(1), ..., y_swb(239)} in the frequency band, divides the frequency domain signal in the 8 to 14kHz frequency band into N subbands, and in this embodiment Said N=15, a set of frequency-domain envelope information {enve(0), enve(1), ..., enve(14)} is obtained.
第äºï¼å°ç¬¬ä¸æ¥ä¸è·å¾çé¢åå ç»ä¿¡æ¯ååä¸ºå¥æ°å ç»é¨å{enve(1)ï¼enve(3)ï¼â¦â¦ï¼enve(13)}åå¶æ°å ç»é¨å{enve(0)ï¼enve(2)ï¼â¦â¦ï¼enve(14)}ãSecond, the frequency-domain envelope information obtained in the first step is divided into odd envelope parts {enve(1), enve(3), ..., enve(13)} and even envelope parts {enve(0) , enve(2), ..., enve(14)}.
第ä¸ï¼å¯¹æè¿°å¶æ°å ç»é¨åè¿è¡éåï¼å¾å°éååçé¢åå ç»ä¿¡æ¯{enveq(0)ï¼enveq(2)ï¼â¦â¦ï¼enveq(14)}ï¼å»ºç«å¥æ°å ç»é¨å{enve(1)ï¼enve(3)ï¼â¦â¦ï¼enve(13)}åéååçå¶æ°å ç»é¨ååéååçé¢åå ç»ä¿¡æ¯{enveq(0)ï¼enveq(2)ï¼â¦â¦ï¼enveq(14)}ä¹é´ç对åºå ³ç³»enveâ²(i)ï¼(enveq(i-1)+enveq(i+1))/2ï¼(iï¼1ï¼3ï¼5â¦â¦13)ãThird, quantize the even-numbered envelope part to obtain quantized frequency-domain envelope information {enve q (0), enve q (2), ..., enve q (14)}, and establish an odd-numbered envelope part {enve(1), enve(3), ..., enve(13)} and quantized frequency-domain envelope information {enve q (0), enve q (2), ... ..., the correspondence between enve q (14)} enve'(i)=(enve q (i-1)+enve q (i+1))/2, (i=1, 3, 5...13 ).
第åï¼å¯¹å¶æ°å ç»é¨åè¿è¡åµå ¥å¼ç¼ç ï¼çæè¶ 宽带第ä¸ç çå±ï¼å æ¬ï¼Fourth, perform embedded encoding on the even-numbered envelope to generate the first ultra-wideband code rate layer, including:
é¦å ï¼å¯¹æè¿°å¶æ°å ç»é¨åéååç第ä¸ä¸ªé¢åå ç»enveq(0)è¿è¡ç¼ç ï¼å¾å°ç¼ç ç´¢å¼index(0)ï¼First, encode the first frequency-domain envelope enve q (0) after quantization of the even-numbered envelope part to obtain an encoding index index (0);
ç¶åï¼æ±åå¶æ°å ç»é¨åå ¶ä»éååççé¢åå ç»ç¸å¯¹äºåä¸ä¸ªéååçé¢åå ç»ç第ä¸å·®åä¿¡å·ï¼å³diï¼enveq(i)-enveq(i-2)ï¼(iï¼2ï¼4ï¼6â¦â¦14)ï¼Then, obtain the first differential signal of other quantized frequency-domain envelopes of the even-numbered envelope part relative to the previous quantized frequency-domain envelope, that is, d i =enve q (i)-enve q (i-2 ), (i=2, 4, 6...14);
æåï¼å¯¹æè¿°ç¬¬ä¸å·®åä¿¡å·è¿è¡éåï¼è·å¾éååç第ä¸å·®åä¿¡å·di qï¼å¹¶å¯¹æè¿°éååç第ä¸å·®åä¿¡å·è¿è¡åµå ¥å¼çµç¼ç ï¼å¾å°å ¶ç¼ç ç´¢å¼index(i/2)ï¼å°{index(0)ï¼â¦ï¼index(7)ï¼index(8)ï¼â¦ï¼index(14)}å å ¥å°è¶ 宽带第ä¸ç çå±ä¸ãFinally, quantize the first differential signal to obtain the quantized first differential signal d i q , and perform embedded entropy coding on the quantized first differential signal to obtain its coding index index(i/2 ), adding {index(0), ..., index(7), index(8), ..., index(14)} to the first code rate layer of ultra-wideband.
第äºï¼è·å奿°å ç»é¨åenve(i)(iï¼1ï¼3ï¼â¦â¦15)ä¸ä»£æ¢åç奿°å ç»é¨åenveâ²(i)(iï¼1ï¼3ï¼â¦â¦15)ä¹é´ç第äºå·®åä¿¡å·dâ²iï¼enve(i)-enveâ²(i)(iï¼1ï¼3ï¼â¦â¦13)ï¼å¯¹æè¿°ç¬¬äºå·®åä¿¡å·dâ²iè¿è¡åµå ¥å¼çµç¼ç ï¼å¾å°å ¶ç¼ç ç´¢å¼index((i+1)/2+7)(iï¼1ï¼3ï¼â¦â¦13)ï¼å°{index(8)ï¼â¦ï¼index(14)}å å ¥å°è¶ 宽带第äºç çå±ä¸ãFifth, obtain the difference between the odd envelope part enve(i) (i=1, 3, ... 15) and the replaced odd envelope part enve'(i) (i = 1, 3, ... 15) The second differential signal d' i =enve(i)-enve'(i)(i=1, 3,...13), the embedded entropy coding is performed on the second differential signal d' i to obtain its code Index index ((i+1)/2+7) (i=1, 3, ... 13), add {index (8), ..., index (14)} to the second UWB code rate layer.
è§£ç 端ï¼Decoder:
第ä¸ï¼å¯¹è¶ 宽带第ä¸ç çå±è¿è¡è§£ç ï¼éæå¶æ°å ç»é¨åçé¢åå ç»ä¿¡æ¯ï¼å æ¬ï¼First, decode the first code rate layer of the ultra-wideband, and reconstruct the frequency-domain envelope information of the even-numbered envelope part, including:
é¦å ï¼ä»è¶ 宽带第ä¸ç çå±ä¸è·åå¶æ°å ç»é¨åçç´¢å¼ä¿¡æ¯{index(0)ï¼â¦ï¼index(7)}ï¼æ ¹æ®è¯¥ç´¢å¼ä¿¡æ¯è§£ç å¾å°{enveq(0)ï¼d2 qï¼d4 qï¼â¦ï¼d14 q}ï¼First, obtain the index information {index(0),...,index(7)} of the even-numbered envelope part from the ultra-wideband first code rate layer, and decode according to the index information to obtain {enve q (0), d 2 q , d 4 q ,...,d 14 q };
ç¶åï¼æ ¹æ®å ¬å¼diï¼enveq(i)-enveq(i-2)ï¼(iï¼2ï¼4ï¼6â¦â¦14)ï¼è·åå¶æ°å ç»é¨åéååçå ¶ä»æ¶åå ç»ä¿¡æ¯ï¼å¾å°å¶æ°å ç»é¨åéååçé¢åå ç»ä¿¡æ¯{enveq(0)ï¼enveq(2)ï¼â¦enveq(14)}ãThen, according to the formula d i =enve q (i)-enve q (i-2), (i=2, 4, 6...14), obtain other time-domain envelope information after quantization of the even-numbered envelope part, and obtain The frequency-domain envelope information {enve q (0), enve q (2), ...enve q (14)} after quantization of the even envelope part.
第äºï¼æ ¹æ®ä¸ç¼ç 端ç¸åç奿°å ç»é¨åä¸å¶æ°å ç»é¨åä¹é´ç代æ¢å ³ç³»enveâ²(i)ï¼(enveq(i-1)+enveq(i+1))/2ï¼(iï¼1ï¼3ï¼5â¦â¦13)ï¼éæå¥æ°å ç»é¨åçé¢åå ç»ä¿¡æ¯{enveâ²(1)ï¼enveâ²(3)ï¼â¦ï¼enveâ²(13)}ãSecond, according to the substitution relationship enve'(i)=(enve q (i-1)+enve q (i+1))/2 between the odd envelope part and the even envelope part same as the encoding end, (i=1, 3, 5...13), reconstruct the frequency-domain envelope information {enve'(1), enve'(3),...,enve'(13)} of the odd-numbered envelope part.
第ä¸ï¼ä»è¶ 宽带第äºç çå±ä¸è·åå¶æ°å ç»é¨åçç´¢å¼ä¿¡æ¯{index(8)ï¼â¦ï¼index(14)}ï¼æ ¹æ®è¯¥ç´¢å¼ä¿¡æ¯è§£ç åº{d1 qï¼d3 qï¼â¦ï¼d13 q}ãThird, obtain the index information {index(8),...,index(14)} of the even-numbered envelope part from the ultra-wideband second code rate layer, and decode {d 1 q , d 3 q ,... , d 13 q }.
第åï¼æ ¹æ®{enveâ²(1)ï¼enveâ²(3)ï¼â¦ï¼enveâ²(13)}å{d1 qï¼d3 qï¼â¦ï¼d13 q}ï¼è·å¾å¢å¼ºç奿°å ç»é¨åçé¢åå ç»ä¿¡æ¯{enveq(1)ï¼enveq(3)ï¼â¦ï¼enveq(13)}ãFourth, according to {enveâ²(1), enveâ²(3),â¦,enveâ²(13)} and {d 1 q , d 3 q ,â¦, d 13 q }, obtain the enhanced odd envelope part Frequency-domain envelope information {enve q (1), enve q (3), ..., enve q (13)}.
第äºï¼æ ¹æ®{enveq(0)ï¼enveq(2)ï¼â¦enveq(14)}å{enveq(1)ï¼enveq(3)ï¼â¦ï¼enveq(13)}ï¼éæåå§çè¾å ¥ä¿¡å·ã Fifth , reconstruct the original _ input signal.
宿½ä¾2ï¼è¶ 宽带åµå ¥å¼ç¼ç å¨çè¾å ¥ä¿¡å·æ¯32kHzéæ ·çï¼å¸¦å®½ä¸º16kHzï¼å¤ç帧é¿ä¸º20msï¼éç¨æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼è§£ç æ¹æ³å¯¹è¶ 宽带é¨åçé¢åå ç»è¿è¡å¤çï¼è¶ 宽带ç çå±ç¼ç æ¯ç¹èµæºç¸å¯¹å è¶³ãEmbodiment 2: the input signal of the ultra-wideband embedded encoder is 32kHz sampling rate, the bandwidth is 16kHz, and the processing frame length is 20ms, and the frequency-domain envelope of the ultra-wideband part is carried out using the embedded encoding and decoding method provided by the embodiment of the present invention Processing, UWB code rate layer encoding bit resources are relatively sufficient.
æ¬å®æ½ä¾ä¸å®æ½ä¾1çç¼ç åè§£ç æ¥éª¤ç¸ä¼¼ï¼å ¶åºå«å¨äºï¼This embodiment is similar to the encoding and decoding steps of Embodiment 1, the difference is that:
ç¼ç 端ï¼Encoder:
å¨å®æ½ä¾1æè¿°ç¼ç ç«¯ç¬¬äºæ¥åºç¡ä¸ï¼å°è·å¾ç第äºå·®åä¿¡å·dâ²iï¼enve(i)-enveâ²(i)ååæä¸¤ä¸ªå带ï¼å³å°{index(8)ï¼â¦ï¼index(14)}åå为两个å带{index(8)ï¼â¦ï¼index(k)}å{index(k+1)ï¼â¦ï¼index(14)}ï¼å°{index(8)ï¼â¦ï¼index(k)}å å ¥è¶ å®½å¸¦ç¬¬ä¸ç çå±ï¼å°{index(k+1)ï¼â¦ï¼index(14)}å å ¥è¶ å®½å¸¦ç¬¬äºç çå±ãOn the basis of the fifth step at the encoding end described in Embodiment 1, the obtained second differential signal d' i =enve(i)-enve'(i) is divided into two subbands, that is, {index(8),..., index(14)} is divided into two subbands {index(8),...,index(k)} and {index(k+1),...,index(14)}, and {index(8),...,index (k)} is added to the first UWB code rate layer, and {index(k+1),..., index(14)} is added to the UWB second code rate layer.
è§£ç 端ï¼Decoder:
宿½ä¾1è§£ç 端çç¬¬ä¸æ¥éª¤æè¿°ç{d1 qï¼d3 qï¼â¦ï¼d13 q}ï¼å¨æ¬å®æ½ä¾ä¸æ¯ä»è¶ 宽带第ä¸ç çå±å第äºç çå±ä¸è§£ç è·å¾çï¼å³ä»è¶ 宽带第ä¸ç çå±ä¸è·å¾{d1 qï¼d3 qï¼â¦ï¼dk q}ï¼ä»è¶ 宽带第ä¸ç çå±ä¸è·å¾{dk+1 qï¼d3 qï¼â¦ï¼d13 q}ãThe {d 1 q , d 3 q , ..., d 13 q } described in the third step of the decoding end in Embodiment 1 is obtained by decoding from the ultra-wideband first code rate layer and the second code rate layer in this embodiment , that is, {d 1 q , d 3 q , ..., d k q } are obtained from the first ultra-wideband code rate layer, and {d k+1 q , d 3 q , ..., d 13 q }.
卿¬å®æ½ä¾ä¸ï¼å½è§£ç ç«¯æ¥æ¶å°çç æµä¸ä¸å å«è¶ 宽带第äºç çå±ä¿¡æ¯æ¶ï¼å¯ä»¥æ ¹æ®{enveq(0)ï¼enveq(2)ï¼â¦enveq(14)}ã{enveq(1)ï¼enveq(3)ï¼â¦ï¼enveq(k)}以å{enveâ²(k+1)ï¼enveâ²(3)ï¼â¦ï¼enveâ²(13)}ï¼éæåå§çè¾å ¥ä¿¡å·ãIn this embodiment, when the code stream received by the decoding end does not contain the information of the second code rate layer of ultra-wideband, it can be based on {enve q (0), enve q (2), ... enve q (14)}, {enve q (1), enve q (3), ..., enve q (k)} and {enve'(k+1), enve'(3), ..., enve'(13)}, reconstruct the original input signal.
å¦å¾3æç¤ºï¼æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç è£ ç½®ï¼å æ¬ï¼As shown in Figure 3, the embedded encoding device provided by the embodiment of the present invention includes:
å ç»ä¿¡æ¯åååå 301ï¼ç¨äºå°åå§ä¿¡å·çæ¶åæè é¢åå ç»ä¿¡æ¯åå为第ä¸é¨åå第äºé¨åï¼An envelope information division unit 301, configured to divide the time-domain or frequency-domain envelope information of the original signal into a first part and a second part;
代æ¢å ³ç³»å»ºç«åå 302ï¼ç¨äºå»ºç«æè¿°ç¬¬ä¸é¨åå第äºé¨åä¹é´ç代æ¢å ³ç³»ï¼æè¿°ä»£æ¢å ³ç³»ç¨äºè§£ç æ¶å°ç¬¬ä¸é¨å代æ¢å¾å°ç¬¬äºé¨åï¼A substitution relationship establishment unit 302, configured to establish a substitution relationship between the first part and the second part, and the substitution relationship is used to substitute the first part to obtain the second part during decoding;
åµå ¥å¼ç¼ç åå 303ï¼ç¨äºå¯¹æè¿°ç¬¬ä¸é¨åè¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬ä¸ç çå±ãThe embedded encoding unit 303 is configured to perform embedded encoding on the first part to generate a first code rate layer.
è¿ä¸æ¥å°ï¼å¦å¾4æç¤ºï¼æè¿°åµå ¥å¼ç¼ç åå 303å¯ä»¥å æ¬ï¼Further, as shown in FIG. 4, the embedded coding unit 303 may include:
第ä¸å·®åä¿¡å·è·ååå 3031ï¼ç¨äºä»æè¿°ç¬¬ä¸é¨åç第äºä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯å¼å§ï¼è·åå½åæ¶åæè é¢åå ç»ä¿¡æ¯ç¸å¯¹äºåä¸ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯ç第ä¸å·®åä¿¡å·ï¼The first differential signal acquiring unit 3031 is configured to start from the second time domain or frequency domain envelope information of the first part, and acquire the current time domain or frequency domain envelope information relative to the previous time domain or frequency domain envelope information a first differential signal of information;
ç¼ç åå 3032ï¼ç¨äºå¯¹æè¿°ç¬¬ä¸é¨åç第ä¸ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯ä»¥å第ä¸å·®åä¿¡å·è·ååå è·åçè³å°ä¸ä¸ªç¬¬ä¸å·®åä¿¡å·è¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬ä¸ç çå±ãThe coding unit 3032 is configured to perform embedded coding on the first time-domain or frequency-domain envelope information of the first part and at least one first differential signal obtained by the first differential signal obtaining unit to generate a first code rate layer.
è¿ä¸æ¥å°ï¼å¦å¾4æç¤ºï¼æè¿°åµå ¥å¼ç¼ç è£ ç½®ï¼è¿å¯ä»¥å æ¬ï¼Further, as shown in Figure 4, the embedded coding device may also include:
第äºå·®åä¿¡å·è·ååå 304ï¼ç¨äºè·åæè¿°ç¬¬äºé¨åä¸ç¨ç¬¬ä¸é¨å代æ¢åç第äºé¨åä¹é´ç第äºå·®åä¿¡å·ï¼A second differential signal acquiring unit 304, configured to acquire a second differential signal between the second part and the second part replaced by the first part;
æè¿°åµå ¥å¼ç¼ç åå 303ï¼è¿ç¨äºå¯¹æè¿°ç¬¬äºå·®åä¿¡å·è¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬äºç çå±ãThe embedded encoding unit 303 is further configured to perform embedded encoding on the second differential signal to generate a second code rate layer.
è¿ä¸æ¥å°ï¼å¦å¾4æç¤ºï¼æè¿°åµå ¥å¼ç¼ç è£ ç½®ï¼è¿å¯ä»¥å æ¬ï¼ç¬¬äºå·®åä¿¡å·åååå 305ï¼ç¨äºå°æè¿°ç¬¬äºå·®åä¿¡å·ååæç¬¬ä¸åé¨åå第äºåé¨åï¼Further, as shown in FIG. 4, the embedded encoding device may further include: a second differential signal dividing unit 305, configured to divide the second differential signal into a first sub-part and a second sub-part;
æè¿°åµå ¥å¼ç¼ç åå 303ï¼è¿ç¨äºå¯¹æè¿°å ç»ä¿¡æ¯åååå 301è·å¾ç第ä¸é¨åï¼ä»¥åæè¿°ç¬¬äºå·®åä¿¡å·åååå 305è·å¾ç第ä¸åé¨åè¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬ä¸ç çå±ï¼å¯¹ç¬¬äºå·®åä¿¡å·åååå 305è·å¾ç第äºåé¨åè¿è¡åµå ¥å¼ç¼ç ï¼çæç¬¬äºç çå±ãThe embedded coding unit 303 is further configured to perform embedded coding on the first part obtained by the envelope information division unit 301 and the first sub-part obtained by the second differential signal division unit 305, to generate a first code rate layer, and perform embedded coding on the second sub-part obtained by the second differential signal dividing unit 305 to generate a second code rate layer.
æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç è£ ç½®ï¼ç±äºé¢å 建ç«äºç¬¬ä¸é¨åå第äºé¨åä¹é´ç代æ¢å ³ç³»ï¼æä»¥ç¼ç 端å¯ä»¥åªå¯¹åå§ä¿¡å·æ¶åæè é¢åå ç»ä¿¡æ¯ç第ä¸é¨åè¿è¡åµå ¥å¼ç¼ç ï¼è§£å³äºç°æææ¯å¯¹åå§ä¿¡å·çæ´ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯è¿è¡ç¼ç ï¼é æç¼ç æ¯ç¹èµæºæéæ¶ï¼æè¿°æ¶åæè é¢åå ç»ä¿¡æ¯çéå精度è¾ä½çé®é¢ãæ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç è£ ç½®ï¼å¨ç¼ç æ¯ç¹èµæºæéæ¶ï¼ä¹è½å¤å¯¹æè¿°ç¬¬ä¸é¨åä¿¡æ¯è¿è¡è¾ç²¾ç¡®çéåï¼å¹¶ä¸ï¼æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç è£ ç½®ï¼é¤å¯¹ç¬¬ä¸é¨åè¿è¡åµå ¥å¼ç¼ç å¤ä¸å ç¨é¢å¤çç¼ç æ¯ç¹èµæºï¼æè¿°ç¬¬ä¸é¨åä¸ç¬¬äºé¨åä¹é´ç代æ¢å ³ç³»ç®æ³ç®åãç¨³å®æ§é«ãç±äºæ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç è£ ç½®ï¼è¿å¯ä»¥å¯¹æè¿°ç¬¬äºå·®åä¿¡æ¯è¿è¡åµå ¥å¼ç¼ç ï¼æä»¥ä½¿å¾æ¬æ¹æ³ç¼ç æææ´å¥½ï¼ç¼ç è´¨éæ´é«ãIn the embedded encoding device provided by the embodiment of the present invention, since the substitution relationship between the first part and the second part is established in advance, the encoding end can only embed the first part of the original signal time domain or frequency domain envelope information. The encoding solves the problem that the prior art encodes the entire time-domain or frequency-domain envelope information of the original signal, resulting in limited encoding bit resources, and the quantization accuracy of the time-domain or frequency-domain envelope information is low. The embedded coding device provided by the embodiment of the present invention can also perform more accurate quantization on the first part of information when the coding bit resources are limited; and, the embedded coding device provided by the embodiment of the present invention, in addition to performing The embedded coding does not occupy additional coding bit resources, and the algorithm of the substitution relationship between the first part and the second part is simple and highly stable. Since the embedded encoding device provided by the embodiment of the present invention can also perform embedded encoding on the second difference information, the encoding effect of the method is better and the encoding quality is higher.
å¦å¾5æç¤ºï¼æ¬åæå®æ½ä¾æä¾çåµå ¥å¼è§£ç è£ ç½®ï¼å æ¬ï¼As shown in Figure 5, the embedded decoding device provided by the embodiment of the present invention includes:
第ä¸é¨åä¿¡æ¯éæåå 501ï¼ç¨äºå¯¹ç¬¬ä¸ç çå±è¿è¡è§£ç ï¼éæåå§ä¿¡å·ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼The first partial information reconstruction unit 501 is configured to decode the first code rate layer, and reconstruct the first partial time domain or frequency domain envelope information of the original signal;
第äºé¨åä¿¡æ¯éæåå 502ï¼ç¨äºæ ¹æ®æè¿°ç¬¬ä¸é¨åä¿¡æ¯éæåå 501éæç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼ä»¥åæ ¹æ®ç¼ç æ¹å»ºç«ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä¸ç¬¬äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä¹é´ç代æ¢å ³ç³»ï¼éæåå§ä¿¡å·ç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼The second partial information reconstruction unit 502 is configured to reconstruct the first partial time domain or frequency domain envelope information according to the first partial information reconstruction unit 501, and the first partial time domain or frequency domain envelope established by the encoding party A substitution relationship between the information and the second part of the time-domain or frequency-domain envelope information, reconstructing the second part of the time-domain or frequency-domain envelope information of the original signal;
åå§ä¿¡å·éæåå 503ï¼ç¨äºæ ¹æ®æè¿°ç¬¬ä¸é¨åä¿¡æ¯éæåå 501å第äºé¨åä¿¡æ¯éæåå 502éæç第ä¸é¨åå第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼éæåå§ä¿¡å·ãThe original signal reconstruction unit 503 is configured to reconstruct the original signal according to the first part and the second part of time domain or frequency domain envelope information reconstructed by the first part of information reconstruction unit 501 and the second part of information reconstruction unit 502 .
è¿ä¸æ¥å°ï¼å¦å¾6æç¤ºï¼æè¿°ç¬¬ä¸é¨åä¿¡æ¯éæåå 501å¯ä»¥å æ¬ï¼Further, as shown in FIG. 6, the first partial information reconstruction unit 501 may include:
è§£ç åå 5011ï¼ç¨äºå¯¹ç¬¬ä¸ç çå±è¿è¡è§£ç ï¼è·å¾åå§ä¿¡å·ç¬¬ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ç第ä¸ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯ï¼ä»¥åä¸ä¸ªä»¥ä¸ç第ä¸å·®åä¿¡æ¯ï¼The decoding unit 5011 is configured to decode the first code rate layer, and obtain the first time domain or frequency domain envelope information of the first part of the time domain or frequency domain envelope information of the original signal, and more than one first difference information;
ä¿¡æ¯éæåå 5012ï¼ç¨äºæ ¹æ®æè¿°è§£ç åå 5011è·å¾ç第ä¸ä¸ªæ¶åæè é¢åå ç»ä¿¡æ¯ä»¥å第ä¸å·®åä¿¡æ¯ï¼éææè¿°ç¬¬ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯çåç»æ¶åæè é¢åå ç»ä¿¡æ¯ãAn information reconstruction unit 5012, configured to reconstruct a subsequent time period of the first part of the time domain or frequency domain envelope information according to the first time domain or frequency domain envelope information and the first difference information obtained by the decoding unit 5011. domain or frequency domain envelope information.
è¿ä¸æ¥å°ï¼å¦å¾6æç¤ºï¼æè¿°åµå ¥å¼è§£ç è£ ç½®ï¼è¿å¯ä»¥å æ¬ï¼Further, as shown in Figure 6, the embedded decoding device may also include:
第äºå·®åä¿¡å·è·ååå 503ï¼ç¨äºè·å第äºå·®åä¿¡å·ï¼A second differential signal acquiring unit 503, configured to acquire a second differential signal;
å¢å¼ºç第äºé¨åä¿¡æ¯çæåå 504ï¼ç¨äºæ ¹æ®æè¿°ç¬¬äºå·®åä¿¡å·ä»¥åæè¿°éæç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼çæå¢å¼ºç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼An enhanced second partial information generation unit 504, configured to generate an enhanced second partial time domain or frequency domain envelope according to the second differential signal and the reconstructed second partial time domain or frequency domain envelope information information;
æè¿°åå§ä¿¡å·éæåå 503ï¼è¿ç¨äºæ ¹æ®æè¿°éæç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯åå¢å¼ºç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼çæéæçåå§ä¿¡å·ï¼æThe original signal reconstruction unit 503 is further configured to generate a reconstructed original signal according to the reconstructed first part of time domain or frequency domain envelope information and the enhanced second part of time domain or frequency domain envelope information; or
æ ¹æ®æè¿°éæç第ä¸é¨åå第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä»¥åå¢å¼ºç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼éæåå§ä¿¡å·ãThe original signal is reconstructed according to the reconstructed first part and the second part of time-domain or frequency-domain envelope information and the enhanced second part of time-domain or frequency-domain envelope information.
æ¬åæå®æ½ä¾æä¾çåµå ¥å¼è§£ç è£ ç½®ï¼å¨è§£ç åºåå§ä¿¡å·ç第ä¸é¨åæ¶åæè é¢åå ç»ä¿¡æ¯ä»¥åï¼å¯ä»¥æ ¹æ®é¢å 设置ç代æ¢å ³ç³»éæåºåå§ä¿¡å·ç第äºé¨åæ¶åæè é¢åå ç»ä¿¡æ¯ï¼è½å¤éåºæ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼ç æ¹æ³ï¼å¹¶ä¸ï¼è½å¤éæåºè´¨éè¾å¥½çåå§ä¿¡å·ãThe embedded decoding device provided by the embodiment of the present invention can reconstruct the second part of the original signal in the time domain or frequency domain according to the preset substitution relationship after decoding the first part of the time domain or frequency domain envelope information of the original signal. The domain envelope information can adapt to the embedded coding method provided by the embodiment of the present invention, and can reconstruct an original signal with better quality.
æ¬åæå®æ½ä¾æä¾çåµå ¥å¼ç¼è§£ç æ¹æ³åè£ ç½®éç¨äºå¯¹è¯é³åé³é¢çä¿¡å·çåµå ¥å¼ç¼ç ï¼ä»¥æ»¡è¶³é«è´¨éçé³/è§é¢ä¼è®®ãçµè§çµè¯ä¼è®®ãç½ç»éä¿¡ãç§»å¨éä¿¡ãç½ç»æ¥å¡æ§å¶ä»¥å第ä¸ä»£å第å代移å¨é信对åµå ¥å¼è¯é³ä¸é³é¢ç¼ç ç广æ³éæ±ãThe embedded coding and decoding method and device provided by the embodiments of the present invention are suitable for embedded coding of voice and audio signals to meet the requirements of high-quality audio/video conferences, video conferences, network communications, mobile communications, network congestion control and The third and fourth generation mobile communications have extensive requirements for embedded speech and audio coding.
æ¬é¢åæ®éææ¯äººåå¯ä»¥çè§£å®ç°ä¸è¿°å®æ½ä¾æ¹æ³ä¸çå ¨é¨æé¨åæ¥éª¤æ¯å¯ä»¥éè¿ç¨åºæ¥æä»¤ç¸å ³çç¡¬ä»¶å®æï¼æè¿°çç¨åºå¯ä»¥åå¨äºä¸è®¡ç®æºå¯è¯»åå¨ä»è´¨ä¸ï¼å¦ROM/RAMãç£ç¢æå ççãThose of ordinary skill in the art can understand that all or part of the steps in the method of the above-mentioned embodiments can be completed by instructing related hardware through a program, and the program can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, etc. disc or disc, etc.
ä»¥ä¸æè¿°ï¼ä» 为æ¬åæçå ·ä½å®æ½æ¹å¼ï¼ä½æ¬åæçä¿æ¤èå´å¹¶ä¸å±éäºæ¤ï¼ä»»ä½çææ¬ææ¯é¢åçææ¯äººå卿¬åææé²çææ¯èå´å ï¼å¯è½»ææ³å°ååææ¿æ¢ï¼é½åºæ¶µç卿¬åæçä¿æ¤èå´ä¹å ãå æ¤ï¼æ¬åæçä¿æ¤èå´åºæè¿°ä»¥æå©è¦æ±çä¿æ¤èå´ä¸ºåãThe above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4