Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
For Series this parameter is unused and defaults to 0.
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Deprecated since version 1.5.0: Specifying numeric_only=None
is deprecated. The default value will be False
in a future version of pandas.
Examples
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3], ... 'age': [21, 25, 62, 43], ... 'height': [1.61, 1.87, 1.49, 2.01]} ... ).set_index('person_id') >>> df age height person_id 0 21 1.61 1 25 1.87 2 62 1.49 3 43 2.01
>>> df.var() age 352.916667 height 0.056367
Alternatively, ddof=0
can be set to normalize by N instead of N-1:
>>> df.var(ddof=0) age 264.687500 height 0.042275
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4