A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/version/1.5.1/reference/api/pandas.DataFrame.pipe.html below:

pandas.DataFrame.pipe — pandas 1.5.1 documentation

pandas.DataFrame.pipe#
DataFrame.pipe(func, *args, **kwargs)[source]#

Apply chainable functions that expect Series or DataFrames.

Parameters
funcfunction

Function to apply to the Series/DataFrame. args, and kwargs are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the Series/DataFrame.

argsiterable, optional

Positional arguments passed into func.

kwargsmapping, optional

A dictionary of keyword arguments passed into func.

Returns
objectthe return type of func.

Notes

Use .pipe when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing

>>> func(g(h(df), arg1=a), arg2=b, arg3=c)  

You can write

>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe(func, arg2=b, arg3=c)
... )  

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose f takes its data as arg2:

>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe((func, 'arg2'), arg1=a, arg3=c)
...  )  

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4