A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/user_guide/../reference/api/pandas.Index.isna.html below:

pandas.Index.isna — pandas 2.3.1 documentation

pandas.Index.isna#
final Index.isna()[source]#

Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None, numpy.NaN or pd.NaT, get mapped to True values. Everything else get mapped to False values. Characters such as empty strings ‘’ or numpy.inf are not considered NA values.

Returns:
numpy.ndarray[bool]

A boolean array of whether my values are NA.

Examples

Show which entries in a pandas.Index are NA. The result is an array.

>>> idx = pd.Index([5.2, 6.0, np.nan])
>>> idx
Index([5.2, 6.0, nan], dtype='float64')
>>> idx.isna()
array([False, False,  True])

Empty strings are not considered NA values. None is considered an NA value.

>>> idx = pd.Index(['black', '', 'red', None])
>>> idx
Index(['black', '', 'red', None], dtype='object')
>>> idx.isna()
array([False, False, False,  True])

For datetimes, NaT (Not a Time) is considered as an NA value.

>>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'),
...                         pd.Timestamp(''), None, pd.NaT])
>>> idx
DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'],
              dtype='datetime64[ns]', freq=None)
>>> idx.isna()
array([False,  True,  True,  True])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4