A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.sum.html below:

pandas.Series.sum — pandas 2.3.1 documentation

pandas.Series.sum#
Series.sum(axis=None, skipna=True, numeric_only=False, min_count=0, **kwargs)[source]#

Return the sum of the values over the requested axis.

This is equivalent to the method numpy.sum.

Parameters:
axis{index (0)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

Warning

The behavior of DataFrame.sum with axis=None is deprecated, in a future version this will reduce over both axes and return a scalar To retain the old behavior, pass axis=0 (or do not pass axis).

Added in version 2.0.0.

skipnabool, default True

Exclude NA/null values when computing the result.

numeric_onlybool, default False

Include only float, int, boolean columns. Not implemented for Series.

min_countint, default 0

The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.

**kwargs

Additional keyword arguments to be passed to the function.

Returns:
scalar or scalar

Examples

>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64

By default, the sum of an empty or all-NA Series is 0.

>>> pd.Series([], dtype="float64").sum()  # min_count=0 is the default
0.0

This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty series to be NaN, pass min_count=1.

>>> pd.Series([], dtype="float64").sum(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).sum()
0.0
>>> pd.Series([np.nan]).sum(min_count=1)
nan

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4