A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.notna.html below:

pandas.Series.notna — pandas 2.3.1 documentation

pandas.Series.notna#
Series.notna()[source]#

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.

Returns:
Series

Mask of bool values for each element in Series that indicates whether an element is not an NA value.

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.nan],
...                        born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                              pd.Timestamp('1940-04-25')],
...                        name=['Alfred', 'Batman', ''],
...                        toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.notna()
     age   born  name    toy
0   True  False  True  False
1   True   True  True   True
2  False   True  True   True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.nan])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.notna()
0     True
1     True
2    False
dtype: bool

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4