Return the minimum of the values over the requested axis.
If you want the index of the minimum, use idxmin
. This is the equivalent of the numpy.ndarray
method argmin
.
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying axis=None
will apply the aggregation across both axes.
Added in version 2.0.0.
Exclude NA/null values when computing the result.
Include only float, int, boolean columns. Not implemented for Series.
Additional keyword arguments to be passed to the function.
Examples
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4