Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
Of the form {field : array-like} or {field : dict}.
The âorientationâ of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass âcolumnsâ (default). Otherwise if the keys should be rows, pass âindexâ. If âtightâ, assume a dict with keys [âindexâ, âcolumnsâ, âdataâ, âindex_namesâ, âcolumn_namesâ].
Added in version 1.4.0: âtightâ as an allowed value for the orient
argument
Data type to force after DataFrame construction, otherwise infer.
Column labels to use when orient='index'
. Raises a ValueError if used with orient='columns'
or orient='tight'
.
Examples
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d
Specify orient='index'
to create the DataFrame using dictionary keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d
When using the âindexâ orientation, the column names can be specified manually:
>>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d
Specify orient='tight'
to create the DataFrame using a âtightâ format:
>>> data = {'index': [('a', 'b'), ('a', 'c')], ... 'columns': [('x', 1), ('y', 2)], ... 'data': [[1, 3], [2, 4]], ... 'index_names': ['n1', 'n2'], ... 'column_names': ['z1', 'z2']} >>> pd.DataFrame.from_dict(data, orient='tight') z1 x y z2 1 2 n1 n2 a b 1 3 c 2 4
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4