pandas.api.typing.Rolling
instances are returned by .rolling
calls: pandas.DataFrame.rolling()
and pandas.Series.rolling()
. pandas.api.typing.Expanding
instances are returned by .expanding
calls: pandas.DataFrame.expanding()
and pandas.Series.expanding()
. pandas.api.typing.ExponentialMovingWindow
instances are returned by .ewm
calls: pandas.DataFrame.ewm()
and pandas.Series.ewm()
.
Rolling.count
([numeric_only])
Calculate the rolling count of non NaN observations.
Rolling.sum
([numeric_only, engine, ...])
Calculate the rolling sum.
Rolling.mean
([numeric_only, engine, ...])
Calculate the rolling mean.
Rolling.median
([numeric_only, engine, ...])
Calculate the rolling median.
Rolling.var
([ddof, numeric_only, engine, ...])
Calculate the rolling variance.
Rolling.std
([ddof, numeric_only, engine, ...])
Calculate the rolling standard deviation.
Rolling.min
([numeric_only, engine, ...])
Calculate the rolling minimum.
Rolling.max
([numeric_only, engine, ...])
Calculate the rolling maximum.
Rolling.corr
([other, pairwise, ddof, ...])
Calculate the rolling correlation.
Rolling.cov
([other, pairwise, ddof, ...])
Calculate the rolling sample covariance.
Rolling.skew
([numeric_only])
Calculate the rolling unbiased skewness.
Rolling.kurt
([numeric_only])
Calculate the rolling Fisher's definition of kurtosis without bias.
Rolling.apply
(func[, raw, engine, ...])
Calculate the rolling custom aggregation function.
Rolling.aggregate
(func, *args, **kwargs)
Aggregate using one or more operations over the specified axis.
Rolling.quantile
(q[, interpolation, ...])
Calculate the rolling quantile.
Rolling.sem
([ddof, numeric_only])
Calculate the rolling standard error of mean.
Rolling.rank
([method, ascending, pct, ...])
Calculate the rolling rank.
Weighted window functions#Window.mean
([numeric_only])
Calculate the rolling weighted window mean.
Window.sum
([numeric_only])
Calculate the rolling weighted window sum.
Window.var
([ddof, numeric_only])
Calculate the rolling weighted window variance.
Window.std
([ddof, numeric_only])
Calculate the rolling weighted window standard deviation.
Expanding window functions#Expanding.count
([numeric_only])
Calculate the expanding count of non NaN observations.
Expanding.sum
([numeric_only, engine, ...])
Calculate the expanding sum.
Expanding.mean
([numeric_only, engine, ...])
Calculate the expanding mean.
Expanding.median
([numeric_only, engine, ...])
Calculate the expanding median.
Expanding.var
([ddof, numeric_only, engine, ...])
Calculate the expanding variance.
Expanding.std
([ddof, numeric_only, engine, ...])
Calculate the expanding standard deviation.
Expanding.min
([numeric_only, engine, ...])
Calculate the expanding minimum.
Expanding.max
([numeric_only, engine, ...])
Calculate the expanding maximum.
Expanding.corr
([other, pairwise, ddof, ...])
Calculate the expanding correlation.
Expanding.cov
([other, pairwise, ddof, ...])
Calculate the expanding sample covariance.
Expanding.skew
([numeric_only])
Calculate the expanding unbiased skewness.
Expanding.kurt
([numeric_only])
Calculate the expanding Fisher's definition of kurtosis without bias.
Expanding.apply
(func[, raw, engine, ...])
Calculate the expanding custom aggregation function.
Expanding.aggregate
(func, *args, **kwargs)
Aggregate using one or more operations over the specified axis.
Expanding.quantile
(q[, interpolation, ...])
Calculate the expanding quantile.
Expanding.sem
([ddof, numeric_only])
Calculate the expanding standard error of mean.
Expanding.rank
([method, ascending, pct, ...])
Calculate the expanding rank.
Exponentially-weighted window functions# Window indexer#Base class for defining custom window boundaries.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4