read_pickle
(filepath_or_buffer[, ...])
Load pickled pandas object (or any object) from file.
DataFrame.to_pickle
(path, *[, compression, ...])
Pickle (serialize) object to file.
Flat file#read_table
(filepath_or_buffer, *[, sep, ...])
Read general delimited file into DataFrame.
read_csv
(filepath_or_buffer, *[, sep, ...])
Read a comma-separated values (csv) file into DataFrame.
DataFrame.to_csv
([path_or_buf, sep, na_rep, ...])
Write object to a comma-separated values (csv) file.
read_fwf
(filepath_or_buffer, *[, colspecs, ...])
Read a table of fixed-width formatted lines into DataFrame.
Clipboard# Excel#read_excel
(io[, sheet_name, header, names, ...])
Read an Excel file into a pandas
DataFrame
.
DataFrame.to_excel
(excel_writer, *[, ...])
Write object to an Excel sheet.
ExcelFile
(path_or_buffer[, engine, ...])
Class for parsing tabular Excel sheets into DataFrame objects.
ExcelFile.parse
([sheet_name, header, names, ...])
Parse specified sheet(s) into a DataFrame.
Styler.to_excel
(excel_writer[, sheet_name, ...])
Write Styler to an Excel sheet.
ExcelWriter
(path[, engine, date_format, ...])
Class for writing DataFrame objects into excel sheets.
JSON#read_json
(path_or_buf, *[, orient, typ, ...])
Convert a JSON string to pandas object.
json_normalize
(data[, record_path, meta, ...])
Normalize semi-structured JSON data into a flat table.
DataFrame.to_json
([path_or_buf, orient, ...])
Convert the object to a JSON string.
HTML#read_html
(io, *[, match, flavor, header, ...])
Read HTML tables into a list
of DataFrame
objects.
DataFrame.to_html
([buf, columns, col_space, ...])
Render a DataFrame as an HTML table.
Styler.to_html
([buf, table_uuid, ...])
Write Styler to a file, buffer or string in HTML-CSS format.
XML#read_xml
(path_or_buffer, *[, xpath, ...])
Read XML document into a DataFrame
object.
DataFrame.to_xml
([path_or_buffer, index, ...])
Render a DataFrame to an XML document.
Latex#DataFrame.to_latex
([buf, columns, header, ...])
Render object to a LaTeX tabular, longtable, or nested table.
Styler.to_latex
([buf, column_format, ...])
Write Styler to a file, buffer or string in LaTeX format.
HDFStore: PyTables (HDF5)#read_hdf
(path_or_buf[, key, mode, errors, ...])
Read from the store, close it if we opened it.
HDFStore.put
(key, value[, format, index, ...])
Store object in HDFStore.
HDFStore.append
(key, value[, format, axes, ...])
Append to Table in file.
HDFStore.get
(key)
Retrieve pandas object stored in file.
HDFStore.select
(key[, where, start, stop, ...])
Retrieve pandas object stored in file, optionally based on where criteria.
Print detailed information on the store.
HDFStore.keys
([include])
Return a list of keys corresponding to objects stored in HDFStore.
Return a list of all the top-level nodes.
HDFStore.walk
([where])
Walk the pytables group hierarchy for pandas objects.
Warning
One can store a subclass of DataFrame
or Series
to HDF5, but the type of the subclass is lost upon storing.
read_feather
(path[, columns, use_threads, ...])
Load a feather-format object from the file path.
DataFrame.to_feather
(path, **kwargs)
Write a DataFrame to the binary Feather format.
Parquet#read_parquet
(path[, engine, columns, ...])
Load a parquet object from the file path, returning a DataFrame.
DataFrame.to_parquet
([path, engine, ...])
Write a DataFrame to the binary parquet format.
ORC#read_orc
(path[, columns, dtype_backend, ...])
Load an ORC object from the file path, returning a DataFrame.
DataFrame.to_orc
([path, engine, index, ...])
Write a DataFrame to the ORC format.
SAS#read_sas
(filepath_or_buffer, *[, format, ...])
Read SAS files stored as either XPORT or SAS7BDAT format files.
SPSS#read_spss
(path[, usecols, ...])
Load an SPSS file from the file path, returning a DataFrame.
SQL#read_sql_table
(table_name, con[, schema, ...])
Read SQL database table into a DataFrame.
read_sql_query
(sql, con[, index_col, ...])
Read SQL query into a DataFrame.
read_sql
(sql, con[, index_col, ...])
Read SQL query or database table into a DataFrame.
DataFrame.to_sql
(name, con, *[, schema, ...])
Write records stored in a DataFrame to a SQL database.
Google BigQuery#read_gbq
(query[, project_id, index_col, ...])
(DEPRECATED) Load data from Google BigQuery.
STATA#read_stata
(filepath_or_buffer, *[, ...])
Read Stata file into DataFrame.
DataFrame.to_stata
(path, *[, convert_dates, ...])
Export DataFrame object to Stata dta format.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4