Detect non-missing values for an array-like object.
This function takes a scalar or array-like object and indicates whether values are valid (not missing, which is NaN
in numeric arrays, None
or NaN
in object arrays, NaT
in datetimelike).
Object to check for not null or non-missing values.
For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is valid.
Examples
Scalar arguments (including strings) result in a scalar boolean.
>>> pd.notna(pd.NA) False
>>> pd.notna(np.nan) False
ndarrays result in an ndarray of booleans.
>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.notna(array) array([[ True, False, True], [ True, True, False]])
For indexes, an ndarray of booleans is returned.
>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) >>> pd.notna(index) array([ True, True, False, True])
For Series and DataFrame, the same type is returned, containing booleans.
>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.notna(df) 0 1 2 0 True True True 1 True False True
>>> pd.notna(df[1]) 0 True 1 False Name: 1, dtype: bool
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4