A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/../api/pandas.arrays.IntegerArray.html below:

pandas.arrays.IntegerArray — pandas 2.3.1 documentation

pandas.arrays.IntegerArray#
class pandas.arrays.IntegerArray(values, mask, copy=False)[source]#

Array of integer (optional missing) values.

Uses pandas.NA as the missing value.

Warning

IntegerArray is currently experimental, and its API or internal implementation may change without warning.

We represent an IntegerArray with 2 numpy arrays:

To construct an IntegerArray from generic array-like input, use pandas.array() with one of the integer dtypes (see examples).

See Nullable integer data type for more.

Parameters:
valuesnumpy.ndarray

A 1-d integer-dtype array.

masknumpy.ndarray

A 1-d boolean-dtype array indicating missing values.

copybool, default False

Whether to copy the values and mask.

Attributes

Methods

Returns:
IntegerArray

Examples

Create an IntegerArray with pandas.array().

>>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype())
>>> int_array
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: Int32

String aliases for the dtypes are also available. They are capitalized.

>>> pd.array([1, None, 3], dtype='Int32')
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: Int32
>>> pd.array([1, None, 3], dtype='UInt16')
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: UInt16

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4