A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/../api/pandas.arrays.DatetimeArray.html below:

pandas.arrays.DatetimeArray — pandas 2.3.1 documentation

pandas.arrays.DatetimeArray#
class pandas.arrays.DatetimeArray(values, dtype=None, freq=<no_default>, copy=False)[source]#

Pandas ExtensionArray for tz-naive or tz-aware datetime data.

Warning

DatetimeArray is currently experimental, and its API may change without warning. In particular, DatetimeArray.dtype is expected to change to always be an instance of an ExtensionDtype subclass.

Parameters:
valuesSeries, Index, DatetimeArray, ndarray

The datetime data.

For DatetimeArray values (or a Series or Index boxing one), dtype and freq will be extracted from values.

dtypenumpy.dtype or DatetimeTZDtype

Note that the only NumPy dtype allowed is ‘datetime64[ns]’.

freqstr or Offset, optional

The frequency.

copybool, default False

Whether to copy the underlying array of values.

Attributes

Methods

Examples

>>> pd.arrays.DatetimeArray._from_sequence(
...    pd.DatetimeIndex(['2023-01-01', '2023-01-02'], freq='D'))
<DatetimeArray>
['2023-01-01 00:00:00', '2023-01-02 00:00:00']
Length: 2, dtype: datetime64[ns]

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4