A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/../api/pandas.Series.sub.html below:

pandas.Series.sub — pandas 2.3.1 documentation

pandas.Series.sub#
Series.sub(other, level=None, fill_value=None, axis=0)[source]#

Return Subtraction of series and other, element-wise (binary operator sub).

Equivalent to series - other, but with support to substitute a fill_value for missing data in either one of the inputs.

Parameters:
otherSeries or scalar value
levelint or name

Broadcast across a level, matching Index values on the passed MultiIndex level.

fill_valueNone or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing.

axis{0 or ‘index’}

Unused. Parameter needed for compatibility with DataFrame.

Returns:
Series

The result of the operation.

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.subtract(b, fill_value=0)
a    0.0
b    1.0
c    1.0
d   -1.0
e    NaN
dtype: float64

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4