A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/../api/pandas.Series.str.match.html below:

pandas.Series.str.match — pandas 2.3.1 documentation

pandas.Series.str.match#
Series.str.match(pat, case=True, flags=0, na=<no_default>)[source]#

Determine if each string starts with a match of a regular expression.

Parameters:
patstr

Character sequence.

casebool, default True

If True, case sensitive.

flagsint, default 0 (no flags)

Regex module flags, e.g. re.IGNORECASE.

nascalar, optional

Fill value for missing values. The default depends on dtype of the array. For object-dtype, numpy.nan is used. For the nullable StringDtype, pandas.NA is used. For the "str" dtype, False is used.

Returns:
Series/Index/array of boolean values

See also

fullmatch

Stricter matching that requires the entire string to match.

contains

Analogous, but less strict, relying on re.search instead of re.match.

extract

Extract matched groups.

Examples

>>> ser = pd.Series(["horse", "eagle", "donkey"])
>>> ser.str.match("e")
0   False
1   True
2   False
dtype: bool

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4