A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/../api/pandas.Series.quantile.html below:

pandas.Series.quantile — pandas 2.3.1 documentation

pandas.Series.quantile#
Series.quantile(q=0.5, interpolation='linear')[source]#

Return value at the given quantile.

Parameters:
qfloat or array-like, default 0.5 (50% quantile)

The quantile(s) to compute, which can lie in range: 0 <= q <= 1.

interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:

  • linear: i + (j - i) * (x-i)/(j-i), where (x-i)/(j-i) is the fractional part of the index surrounded by i > j.

  • lower: i.

  • higher: j.

  • nearest: i or j whichever is nearest.

  • midpoint: (i + j) / 2.

Returns:
float or Series

If q is an array, a Series will be returned where the index is q and the values are the quantiles, otherwise a float will be returned.

See also

core.window.Rolling.quantile

Calculate the rolling quantile.

numpy.percentile

Returns the q-th percentile(s) of the array elements.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s.quantile(.5)
2.5
>>> s.quantile([.25, .5, .75])
0.25    1.75
0.50    2.50
0.75    3.25
dtype: float64

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4