A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/../api/pandas.Series.clip.html below:

pandas.Series.clip — pandas 2.3.1 documentation

pandas.Series.clip#
Series.clip(lower=None, upper=None, *, axis=None, inplace=False, **kwargs)[source]#

Trim values at input threshold(s).

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.

Parameters:
lowerfloat or array-like, default None

Minimum threshold value. All values below this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.

upperfloat or array-like, default None

Maximum threshold value. All values above this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.

axis{{0 or ‘index’, 1 or ‘columns’, None}}, default None

Align object with lower and upper along the given axis. For Series this parameter is unused and defaults to None.

inplacebool, default False

Whether to perform the operation in place on the data.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with numpy.

Returns:
Series or DataFrame or None

Same type as calling object with the values outside the clip boundaries replaced or None if inplace=True.

Examples

>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}
>>> df = pd.DataFrame(data)
>>> df
   col_0  col_1
0      9     -2
1     -3     -7
2      0      6
3     -1      8
4      5     -5

Clips per column using lower and upper thresholds:

>>> df.clip(-4, 6)
   col_0  col_1
0      6     -2
1     -3     -4
2      0      6
3     -1      6
4      5     -4

Clips using specific lower and upper thresholds per column:

>>> df.clip([-2, -1], [4, 5])
    col_0  col_1
0      4     -1
1     -2     -1
2      0      5
3     -1      5
4      4     -1

Clips using specific lower and upper thresholds per column element:

>>> t = pd.Series([2, -4, -1, 6, 3])
>>> t
0    2
1   -4
2   -1
3    6
4    3
dtype: int64
>>> df.clip(t, t + 4, axis=0)
   col_0  col_1
0      6      2
1     -3     -4
2      0      3
3      6      8
4      5      3

Clips using specific lower threshold per column element, with missing values:

>>> t = pd.Series([2, -4, np.nan, 6, 3])
>>> t
0    2.0
1   -4.0
2    NaN
3    6.0
4    3.0
dtype: float64
>>> df.clip(t, axis=0)
col_0  col_1
0      9      2
1     -3     -4
2      0      6
3      6      8
4      5      3

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4