A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/../api/pandas.Series.apply.html below:

pandas.Series.apply — pandas 2.3.1 documentation

pandas.Series.apply#
Series.apply(func, convert_dtype=<no_default>, args=(), *, by_row='compat', **kwargs)[source]#

Invoke function on values of Series.

Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values.

Parameters:
funcfunction

Python function or NumPy ufunc to apply.

convert_dtypebool, default True

Try to find better dtype for elementwise function results. If False, leave as dtype=object. Note that the dtype is always preserved for some extension array dtypes, such as Categorical.

Deprecated since version 2.1.0: convert_dtype has been deprecated. Do ser.astype(object).apply() instead if you want convert_dtype=False.

argstuple

Positional arguments passed to func after the series value.

by_rowFalse or “compat”, default “compat”

If "compat" and func is a callable, func will be passed each element of the Series, like Series.map. If func is a list or dict of callables, will first try to translate each func into pandas methods. If that doesn’t work, will try call to apply again with by_row="compat" and if that fails, will call apply again with by_row=False (backward compatible). If False, the func will be passed the whole Series at once.

by_row has no effect when func is a string.

Added in version 2.1.0.

**kwargs

Additional keyword arguments passed to func.

Returns:
Series or DataFrame

If func returns a Series object the result will be a DataFrame.

Notes

Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.

Examples

Create a series with typical summer temperatures for each city.

>>> s = pd.Series([20, 21, 12],
...               index=['London', 'New York', 'Helsinki'])
>>> s
London      20
New York    21
Helsinki    12
dtype: int64

Square the values by defining a function and passing it as an argument to apply().

>>> def square(x):
...     return x ** 2
>>> s.apply(square)
London      400
New York    441
Helsinki    144
dtype: int64

Square the values by passing an anonymous function as an argument to apply().

>>> s.apply(lambda x: x ** 2)
London      400
New York    441
Helsinki    144
dtype: int64

Define a custom function that needs additional positional arguments and pass these additional arguments using the args keyword.

>>> def subtract_custom_value(x, custom_value):
...     return x - custom_value
>>> s.apply(subtract_custom_value, args=(5,))
London      15
New York    16
Helsinki     7
dtype: int64

Define a custom function that takes keyword arguments and pass these arguments to apply.

>>> def add_custom_values(x, **kwargs):
...     for month in kwargs:
...         x += kwargs[month]
...     return x
>>> s.apply(add_custom_values, june=30, july=20, august=25)
London      95
New York    96
Helsinki    87
dtype: int64

Use a function from the Numpy library.

>>> s.apply(np.log)
London      2.995732
New York    3.044522
Helsinki    2.484907
dtype: float64

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4