A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/pandas-docs/stable/reference/api/../api/pandas.Index.value_counts.html below:

pandas.Index.value_counts — pandas 2.3.1 documentation

pandas.Index.value_counts#
Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)[source]#

Return a Series containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters:
normalizebool, default False

If True then the object returned will contain the relative frequencies of the unique values.

sortbool, default True

Sort by frequencies when True. Preserve the order of the data when False.

ascendingbool, default False

Sort in ascending order.

binsint, optional

Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data.

dropnabool, default True

Don’t include counts of NaN.

Returns:
Series

Examples

>>> index = pd.Index([3, 1, 2, 3, 4, np.nan])
>>> index.value_counts()
3.0    2
1.0    1
2.0    1
4.0    1
Name: count, dtype: int64

With normalize set to True, returns the relative frequency by dividing all values by the sum of values.

>>> s = pd.Series([3, 1, 2, 3, 4, np.nan])
>>> s.value_counts(normalize=True)
3.0    0.4
1.0    0.2
2.0    0.2
4.0    0.2
Name: proportion, dtype: float64

bins

Bins can be useful for going from a continuous variable to a categorical variable; instead of counting unique apparitions of values, divide the index in the specified number of half-open bins.

>>> s.value_counts(bins=3)
(0.996, 2.0]    2
(2.0, 3.0]      2
(3.0, 4.0]      1
Name: count, dtype: int64

dropna

With dropna set to False we can also see NaN index values.

>>> s.value_counts(dropna=False)
3.0    2
1.0    1
2.0    1
4.0    1
NaN    1
Name: count, dtype: int64

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4