Snap time stamps to nearest occurring frequency.
>>> idx = pd.DatetimeIndex(['2023-01-01', '2023-01-02', ... '2023-02-01', '2023-02-02']) >>> idx DatetimeIndex(['2023-01-01', '2023-01-02', '2023-02-01', '2023-02-02'], dtype='datetime64[ns]', freq=None) >>> idx.snap('MS') DatetimeIndex(['2023-01-01', '2023-01-01', '2023-02-01', '2023-02-01'], dtype='datetime64[ns]', freq=None)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4