Set the DataFrame index using existing columns.
Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it.
This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, âarrayâ encompasses Series
, Index
, np.ndarray
, and instances of Iterator
.
Delete columns to be used as the new index.
Whether to append columns to existing index.
Whether to modify the DataFrame rather than creating a new one.
Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method.
Changed row labels or None if inplace=True
.
Examples
>>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31
Set the index to become the âmonthâ column:
>>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31
Create a MultiIndex using columns âyearâ and âmonthâ:
>>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31
Create a MultiIndex using an Index and a column:
>>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31
Create a MultiIndex using two Series:
>>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4