Return values at the given quantile over requested axis.
Value between 0 <= q <= 1, the quantile(s) to compute.
Equals 0 or âindexâ for row-wise, 1 or âcolumnsâ for column-wise.
Include only float, int or boolean data.
Changed in version 2.0.0: The default value of numeric_only
is now False
.
This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:
linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
lower: i.
higher: j.
nearest: i or j whichever is nearest.
midpoint: (i + j) / 2.
Whether to compute quantiles per-column (âsingleâ) or over all columns (âtableâ). When âtableâ, the only allowed interpolation methods are ânearestâ, âlowerâ, and âhigherâ.
q
is an array, a DataFrame will be returned where the
index is q
, the columns are the columns of self, and the values are the quantiles.
q
is a float, a Series will be returned where the
index is the columns of self and the values are the quantiles.
Examples
>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0
Specifying method=âtableâ will compute the quantile over all columns.
>>> df.quantile(.1, method="table", interpolation="nearest") a 1 b 1 Name: 0.1, dtype: int64 >>> df.quantile([.1, .5], method="table", interpolation="nearest") a b 0.1 1 1 0.5 3 100
Specifying numeric_only=False will also compute the quantile of datetime and timedelta data.
>>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4