The pandas I/O API is a set of top level reader
functions accessed like pandas.read_csv()
that generally return a pandas object. The corresponding writer
functions are object methods that are accessed like DataFrame.to_csv()
. Below is a table containing available readers
and writers
.
Here is an informal performance comparison for some of these IO methods.
Note
For examples that use the StringIO
class, make sure you import it with from io import StringIO
for Python 3.
The workhorse function for reading text files (a.k.a. flat files) is read_csv()
. See the cookbook for some advanced strategies.
read_csv()
accepts the following common arguments:
Either a path to a file (a str
, pathlib.Path
, or py:py._path.local.LocalPath
), URL (including http, ftp, and S3 locations), or any object with a read()
method (such as an open file or StringIO
).
','
for read_csv()
, \t
for read_table()
Delimiter to use. If sep is None
, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator by Pythonâs builtin sniffer tool, csv.Sniffer
. In addition, separators longer than 1 character and different from '\s+'
will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: '\\r\\t'
.
None
Alternative argument name for sep.
Specifies whether or not whitespace (e.g. ' '
or '\t'
) will be used as the delimiter. Equivalent to setting sep='\s+'
. If this option is set to True
, nothing should be passed in for the delimiter
parameter.
'infer'
Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0
and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to header=None
. Explicitly pass header=0
to be able to replace existing names.
The header can be a list of ints that specify row locations for a MultiIndex on the columns e.g. [0,1,3]
. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True
, so header=0 denotes the first line of data rather than the first line of the file.
None
List of column names to use. If file contains no header row, then you should explicitly pass header=None
. Duplicates in this list are not allowed.
None
Column(s) to use as the row labels of the DataFrame
, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used.
Note
index_col=False
can be used to force pandas to not use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line.
The default value of None
instructs pandas to guess. If the number of fields in the column header row is equal to the number of fields in the body of the data file, then a default index is used. If it is larger, then the first columns are used as index so that the remaining number of fields in the body are equal to the number of fields in the header.
The first row after the header is used to determine the number of columns, which will go into the index. If the subsequent rows contain less columns than the first row, they are filled with NaN
.
This can be avoided through usecols
. This ensures that the columns are taken as is and the trailing data are ignored.
None
Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names
or inferred from the document header row(s). If names
are given, the document header row(s) are not taken into account. For example, a valid list-like usecols
parameter would be [0, 1, 2]
or ['foo', 'bar', 'baz']
.
Element order is ignored, so usecols=[0, 1]
is the same as [1, 0]
. To instantiate a DataFrame from data
with element order preserved use pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]
for columns in ['foo', 'bar']
order or pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]
for ['bar', 'foo']
order.
If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True:
In [1]: import pandas as pd In [2]: from io import StringIO In [3]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [4]: pd.read_csv(StringIO(data)) Out[4]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [5]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ["COL1", "COL3"]) Out[5]: col1 col3 0 a 1 1 a 2 2 c 3
Using this parameter results in much faster parsing time and lower memory usage when using the c engine. The Python engine loads the data first before deciding which columns to drop.
None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32, 'c': 'Int64'}
Use str
or object
together with suitable na_values
settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.
Added in version 1.5.0: Support for defaultdict was added. Specify a defaultdict as input where the default determines the dtype of the columns which are not explicitly listed.
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy arrays, nullable dtypes are used for all dtypes that have a nullable implementation when ânumpy_nullableâ is set, pyarrow is used for all dtypes if âpyarrowâ is set.
The dtype_backends are still experimential.
Added in version 2.0.
'c'
, 'python'
, 'pyarrow'
}
Parser engine to use. The C and pyarrow engines are faster, while the python engine is currently more feature-complete. Multithreading is currently only supported by the pyarrow engine.
Added in version 1.4.0: The âpyarrowâ engine was added as an experimental engine, and some features are unsupported, or may not work correctly, with this engine.
None
Dict of functions for converting values in certain columns. Keys can either be integers or column labels.
None
Values to consider as True
.
None
Values to consider as False
.
False
Skip spaces after delimiter.
None
Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.
If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise:
In [6]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [7]: pd.read_csv(StringIO(data)) Out[7]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [8]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0) Out[8]: col1 col2 col3 0 a b 2
0
Number of lines at bottom of file to skip (unsupported with engine=âcâ).
None
Number of rows of file to read. Useful for reading pieces of large files.
True
Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False
, or specify the type with the dtype
parameter. Note that the entire file is read into a single DataFrame
regardless, use the chunksize
or iterator
parameter to return the data in chunks. (Only valid with C parser)
If a filepath is provided for filepath_or_buffer
, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.
None
Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. See na values const below for a list of the values interpreted as NaN by default.
True
Whether or not to include the default NaN values when parsing the data. Depending on whether na_values
is passed in, the behavior is as follows:
If keep_default_na
is True
, and na_values
are specified, na_values
is appended to the default NaN values used for parsing.
If keep_default_na
is True
, and na_values
are not specified, only the default NaN values are used for parsing.
If keep_default_na
is False
, and na_values
are specified, only the NaN values specified na_values
are used for parsing.
If keep_default_na
is False
, and na_values
are not specified, no strings will be parsed as NaN.
Note that if na_filter
is passed in as False
, the keep_default_na
and na_values
parameters will be ignored.
True
Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False
can improve the performance of reading a large file.
False
Indicate number of NA values placed in non-numeric columns.
True
If True
, skip over blank lines rather than interpreting as NaN values.
False
.
If True
-> try parsing the index.
If [1, 2, 3]
-> try parsing columns 1, 2, 3 each as a separate date column.
If [[1, 3]]
-> combine columns 1 and 3 and parse as a single date column.
If {'foo': [1, 3]}
-> parse columns 1, 3 as date and call result âfooâ.
Note
A fast-path exists for iso8601-formatted dates.
False
If True
and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing.
Deprecated since version 2.0.0: A strict version of this argument is now the default, passing it has no effect.
False
If True
and parse_dates specifies combining multiple columns then keep the original columns.
None
Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser
to do the conversion. pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.
Deprecated since version 2.0.0: Use date_format
instead, or read in as object
and then apply to_datetime()
as-needed.
None
If used in conjunction with parse_dates
, will parse dates according to this format. For anything more complex, please read in as object
and then apply to_datetime()
as-needed.
Added in version 2.0.0.
False
DD/MM format dates, international and European format.
If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets.
False
Return TextFileReader
object for iteration or getting chunks with get_chunk()
.
None
Return TextFileReader
object for iteration. See iterating and chunking below.
'infer'
, 'gzip'
, 'bz2'
, 'zip'
, 'xz'
, 'zstd'
, None
, dict
}, default 'infer'
For on-the-fly decompression of on-disk data. If âinferâ, then use gzip, bz2, zip, xz, or zstandard if filepath_or_buffer
is path-like ending in â.gzâ, â.bz2â, â.zipâ, â.xzâ, â.zstâ, respectively, and no decompression otherwise. If using âzipâ, the ZIP file must contain only one data file to be read in. Set to None
for no decompression. Can also be a dict with key 'method'
set to one of {'zip'
, 'gzip'
, 'bz2'
, 'zstd'
} and other key-value pairs are forwarded to zipfile.ZipFile
, gzip.GzipFile
, bz2.BZ2File
, or zstandard.ZstdDecompressor
. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
.
Changed in version 1.2.0: Previous versions forwarded dict entries for âgzipâ to gzip.open
.
None
Thousands separator.
'.'
Character to recognize as decimal point. E.g. use ','
for European data.
Specifies which converter the C engine should use for floating-point values. The options are None
for the ordinary converter, high
for the high-precision converter, and round_trip
for the round-trip converter.
None
Character to break file into lines. Only valid with C parser.
The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.
csv.QUOTE_*
instance, default 0
Control field quoting behavior per csv.QUOTE_*
constants. Use one of QUOTE_MINIMAL
(0), QUOTE_ALL
(1), QUOTE_NONNUMERIC
(2) or QUOTE_NONE
(3).
True
When quotechar
is specified and quoting
is not QUOTE_NONE
, indicate whether or not to interpret two consecutive quotechar
elements inside a field as a single quotechar
element.
None
One-character string used to escape delimiter when quoting is QUOTE_NONE
.
None
Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True
), fully commented lines are ignored by the parameter header
but not by skiprows
. For example, if comment='#'
, parsing â#empty\na,b,c\n1,2,3â with header=0
will result in âa,b,câ being treated as the header.
None
Encoding to use for UTF when reading/writing (e.g. 'utf-8'
). List of Python standard encodings.
csv.Dialect
instance, default None
If provided, this parameter will override values (default or not) for the following parameters: delimiter
, doublequote
, escapechar
, skipinitialspace
, quotechar
, and quoting
. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.
Specifies what to do upon encountering a bad line (a line with too many fields). Allowed values are :
âerrorâ, raise an ParserError when a bad line is encountered.
âwarnâ, print a warning when a bad line is encountered and skip that line.
âskipâ, skip bad lines without raising or warning when they are encountered.
Added in version 1.3.0.
You can indicate the data type for the whole DataFrame
or individual columns:
In [9]: import numpy as np In [10]: data = "a,b,c,d\n1,2,3,4\n5,6,7,8\n9,10,11" In [11]: print(data) a,b,c,d 1,2,3,4 5,6,7,8 9,10,11 In [12]: df = pd.read_csv(StringIO(data), dtype=object) In [13]: df Out[13]: a b c d 0 1 2 3 4 1 5 6 7 8 2 9 10 11 NaN In [14]: df["a"][0] Out[14]: '1' In [15]: df = pd.read_csv(StringIO(data), dtype={"b": object, "c": np.float64, "d": "Int64"}) In [16]: df.dtypes Out[16]: a int64 b object c float64 d Int64 dtype: object
Fortunately, pandas offers more than one way to ensure that your column(s) contain only one dtype
. If youâre unfamiliar with these concepts, you can see here to learn more about dtypes, and here to learn more about object
conversion in pandas.
For instance, you can use the converters
argument of read_csv()
:
In [17]: data = "col_1\n1\n2\n'A'\n4.22" In [18]: df = pd.read_csv(StringIO(data), converters={"col_1": str}) In [19]: df Out[19]: col_1 0 1 1 2 2 'A' 3 4.22 In [20]: df["col_1"].apply(type).value_counts() Out[20]: col_1 <class 'str'> 4 Name: count, dtype: int64
Or you can use the to_numeric()
function to coerce the dtypes after reading in the data,
In [21]: df2 = pd.read_csv(StringIO(data)) In [22]: df2["col_1"] = pd.to_numeric(df2["col_1"], errors="coerce") In [23]: df2 Out[23]: col_1 0 1.00 1 2.00 2 NaN 3 4.22 In [24]: df2["col_1"].apply(type).value_counts() Out[24]: col_1 <class 'float'> 4 Name: count, dtype: int64
which will convert all valid parsing to floats, leaving the invalid parsing as NaN
.
Ultimately, how you deal with reading in columns containing mixed dtypes depends on your specific needs. In the case above, if you wanted to NaN
out the data anomalies, then to_numeric()
is probably your best option. However, if you wanted for all the data to be coerced, no matter the type, then using the converters
argument of read_csv()
would certainly be worth trying.
Note
In some cases, reading in abnormal data with columns containing mixed dtypes will result in an inconsistent dataset. If you rely on pandas to infer the dtypes of your columns, the parsing engine will go and infer the dtypes for different chunks of the data, rather than the whole dataset at once. Consequently, you can end up with column(s) with mixed dtypes. For example,
In [25]: col_1 = list(range(500000)) + ["a", "b"] + list(range(500000)) In [26]: df = pd.DataFrame({"col_1": col_1}) In [27]: df.to_csv("foo.csv") In [28]: mixed_df = pd.read_csv("foo.csv") In [29]: mixed_df["col_1"].apply(type).value_counts() Out[29]: col_1 <class 'int'> 737858 <class 'str'> 262144 Name: count, dtype: int64 In [30]: mixed_df["col_1"].dtype Out[30]: dtype('O')
will result with mixed_df
containing an int
dtype for certain chunks of the column, and str
for others due to the mixed dtypes from the data that was read in. It is important to note that the overall column will be marked with a dtype
of object
, which is used for columns with mixed dtypes.
Setting dtype_backend="numpy_nullable"
will result in nullable dtypes for every column.
In [31]: data = """a,b,c,d,e,f,g,h,i,j ....: 1,2.5,True,a,,,,,12-31-2019, ....: 3,4.5,False,b,6,7.5,True,a,12-31-2019, ....: """ ....: In [32]: df = pd.read_csv(StringIO(data), dtype_backend="numpy_nullable", parse_dates=["i"]) In [33]: df Out[33]: a b c d e f g h i j 0 1 2.5 True a <NA> <NA> <NA> <NA> 2019-12-31 <NA> 1 3 4.5 False b 6 7.5 True a 2019-12-31 <NA> In [34]: df.dtypes Out[34]: a Int64 b Float64 c boolean d string[python] e Int64 f Float64 g boolean h string[python] i datetime64[ns] j Int64 dtype: objectSpecifying categorical dtype#
Categorical
columns can be parsed directly by specifying dtype='category'
or dtype=CategoricalDtype(categories, ordered)
.
In [35]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [36]: pd.read_csv(StringIO(data)) Out[36]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [37]: pd.read_csv(StringIO(data)).dtypes Out[37]: col1 object col2 object col3 int64 dtype: object In [38]: pd.read_csv(StringIO(data), dtype="category").dtypes Out[38]: col1 category col2 category col3 category dtype: object
Individual columns can be parsed as a Categorical
using a dict specification:
In [39]: pd.read_csv(StringIO(data), dtype={"col1": "category"}).dtypes Out[39]: col1 category col2 object col3 int64 dtype: object
Specifying dtype='category'
will result in an unordered Categorical
whose categories
are the unique values observed in the data. For more control on the categories and order, create a CategoricalDtype
ahead of time, and pass that for that columnâs dtype
.
In [40]: from pandas.api.types import CategoricalDtype In [41]: dtype = CategoricalDtype(["d", "c", "b", "a"], ordered=True) In [42]: pd.read_csv(StringIO(data), dtype={"col1": dtype}).dtypes Out[42]: col1 category col2 object col3 int64 dtype: object
When using dtype=CategoricalDtype
, âunexpectedâ values outside of dtype.categories
are treated as missing values.
In [43]: dtype = CategoricalDtype(["a", "b", "d"]) # No 'c' In [44]: pd.read_csv(StringIO(data), dtype={"col1": dtype}).col1 Out[44]: 0 a 1 a 2 NaN Name: col1, dtype: category Categories (3, object): ['a', 'b', 'd']
This matches the behavior of Categorical.set_categories()
.
Note
With dtype='category'
, the resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can be converted using the to_numeric()
function, or as appropriate, another converter such as to_datetime()
.
When dtype
is a CategoricalDtype
with homogeneous categories
( all numeric, all datetimes, etc.), the conversion is done automatically.
In [45]: df = pd.read_csv(StringIO(data), dtype="category") In [46]: df.dtypes Out[46]: col1 category col2 category col3 category dtype: object In [47]: df["col3"] Out[47]: 0 1 1 2 2 3 Name: col3, dtype: category Categories (3, object): ['1', '2', '3'] In [48]: new_categories = pd.to_numeric(df["col3"].cat.categories) In [49]: df["col3"] = df["col3"].cat.rename_categories(new_categories) In [50]: df["col3"] Out[50]: 0 1 1 2 2 3 Name: col3, dtype: category Categories (3, int64): [1, 2, 3]Naming and using columns# Handling column names#
A file may or may not have a header row. pandas assumes the first row should be used as the column names:
In [51]: data = "a,b,c\n1,2,3\n4,5,6\n7,8,9" In [52]: print(data) a,b,c 1,2,3 4,5,6 7,8,9 In [53]: pd.read_csv(StringIO(data)) Out[53]: a b c 0 1 2 3 1 4 5 6 2 7 8 9
By specifying the names
argument in conjunction with header
you can indicate other names to use and whether or not to throw away the header row (if any):
In [54]: print(data) a,b,c 1,2,3 4,5,6 7,8,9 In [55]: pd.read_csv(StringIO(data), names=["foo", "bar", "baz"], header=0) Out[55]: foo bar baz 0 1 2 3 1 4 5 6 2 7 8 9 In [56]: pd.read_csv(StringIO(data), names=["foo", "bar", "baz"], header=None) Out[56]: foo bar baz 0 a b c 1 1 2 3 2 4 5 6 3 7 8 9
If the header is in a row other than the first, pass the row number to header
. This will skip the preceding rows:
In [57]: data = "skip this skip it\na,b,c\n1,2,3\n4,5,6\n7,8,9" In [58]: pd.read_csv(StringIO(data), header=1) Out[58]: a b c 0 1 2 3 1 4 5 6 2 7 8 9
Note
Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0
and column names are inferred from the first non-blank line of the file, if column names are passed explicitly then the behavior is identical to header=None
.
If the file or header contains duplicate names, pandas will by default distinguish between them so as to prevent overwriting data:
In [59]: data = "a,b,a\n0,1,2\n3,4,5" In [60]: pd.read_csv(StringIO(data)) Out[60]: a b a.1 0 0 1 2 1 3 4 5
There is no more duplicate data because duplicate columns âXâ, â¦, âXâ become âXâ, âX.1â, â¦, âX.Nâ.
Filtering columns (usecols
)#
The usecols
argument allows you to select any subset of the columns in a file, either using the column names, position numbers or a callable:
In [61]: data = "a,b,c,d\n1,2,3,foo\n4,5,6,bar\n7,8,9,baz" In [62]: pd.read_csv(StringIO(data)) Out[62]: a b c d 0 1 2 3 foo 1 4 5 6 bar 2 7 8 9 baz In [63]: pd.read_csv(StringIO(data), usecols=["b", "d"]) Out[63]: b d 0 2 foo 1 5 bar 2 8 baz In [64]: pd.read_csv(StringIO(data), usecols=[0, 2, 3]) Out[64]: a c d 0 1 3 foo 1 4 6 bar 2 7 9 baz In [65]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ["A", "C"]) Out[65]: a c 0 1 3 1 4 6 2 7 9
The usecols
argument can also be used to specify which columns not to use in the final result:
In [66]: pd.read_csv(StringIO(data), usecols=lambda x: x not in ["a", "c"]) Out[66]: b d 0 2 foo 1 5 bar 2 8 baz
In this case, the callable is specifying that we exclude the âaâ and âcâ columns from the output.
Comments and empty lines# Ignoring line comments and empty lines#If the comment
parameter is specified, then completely commented lines will be ignored. By default, completely blank lines will be ignored as well.
In [67]: data = "\na,b,c\n \n# commented line\n1,2,3\n\n4,5,6" In [68]: print(data) a,b,c # commented line 1,2,3 4,5,6 In [69]: pd.read_csv(StringIO(data), comment="#") Out[69]: a b c 0 1 2 3 1 4 5 6
If skip_blank_lines=False
, then read_csv
will not ignore blank lines:
In [70]: data = "a,b,c\n\n1,2,3\n\n\n4,5,6" In [71]: pd.read_csv(StringIO(data), skip_blank_lines=False) Out[71]: a b c 0 NaN NaN NaN 1 1.0 2.0 3.0 2 NaN NaN NaN 3 NaN NaN NaN 4 4.0 5.0 6.0
Warning
The presence of ignored lines might create ambiguities involving line numbers; the parameter header
uses row numbers (ignoring commented/empty lines), while skiprows
uses line numbers (including commented/empty lines):
In [72]: data = "#comment\na,b,c\nA,B,C\n1,2,3" In [73]: pd.read_csv(StringIO(data), comment="#", header=1) Out[73]: A B C 0 1 2 3 In [74]: data = "A,B,C\n#comment\na,b,c\n1,2,3" In [75]: pd.read_csv(StringIO(data), comment="#", skiprows=2) Out[75]: a b c 0 1 2 3
If both header
and skiprows
are specified, header
will be relative to the end of skiprows
. For example:
In [76]: data = ( ....: "# empty\n" ....: "# second empty line\n" ....: "# third emptyline\n" ....: "X,Y,Z\n" ....: "1,2,3\n" ....: "A,B,C\n" ....: "1,2.,4.\n" ....: "5.,NaN,10.0\n" ....: ) ....: In [77]: print(data) # empty # second empty line # third emptyline X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 In [78]: pd.read_csv(StringIO(data), comment="#", skiprows=4, header=1) Out[78]: A B C 0 1.0 2.0 4.0 1 5.0 NaN 10.0Dealing with Unicode data#
The encoding
argument should be used for encoded unicode data, which will result in byte strings being decoded to unicode in the result:
In [86]: from io import BytesIO In [87]: data = b"word,length\n" b"Tr\xc3\xa4umen,7\n" b"Gr\xc3\xbc\xc3\x9fe,5" In [88]: data = data.decode("utf8").encode("latin-1") In [89]: df = pd.read_csv(BytesIO(data), encoding="latin-1") In [90]: df Out[90]: word length 0 Träumen 7 1 GrüÃe 5 In [91]: df["word"][1] Out[91]: 'GrüÃe'
Some formats which encode all characters as multiple bytes, like UTF-16, wonât parse correctly at all without specifying the encoding. Full list of Python standard encodings.
Index columns and trailing delimiters#If a file has one more column of data than the number of column names, the first column will be used as the DataFrame
âs row names:
In [92]: data = "a,b,c\n4,apple,bat,5.7\n8,orange,cow,10" In [93]: pd.read_csv(StringIO(data)) Out[93]: a b c 4 apple bat 5.7 8 orange cow 10.0
In [94]: data = "index,a,b,c\n4,apple,bat,5.7\n8,orange,cow,10" In [95]: pd.read_csv(StringIO(data), index_col=0) Out[95]: a b c index 4 apple bat 5.7 8 orange cow 10.0
Ordinarily, you can achieve this behavior using the index_col
option.
There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing the parser. To explicitly disable the index column inference and discard the last column, pass index_col=False
:
In [96]: data = "a,b,c\n4,apple,bat,\n8,orange,cow," In [97]: print(data) a,b,c 4,apple,bat, 8,orange,cow, In [98]: pd.read_csv(StringIO(data)) Out[98]: a b c 4 apple bat NaN 8 orange cow NaN In [99]: pd.read_csv(StringIO(data), index_col=False) Out[99]: a b c 0 4 apple bat 1 8 orange cow
If a subset of data is being parsed using the usecols
option, the index_col
specification is based on that subset, not the original data.
In [100]: data = "a,b,c\n4,apple,bat,\n8,orange,cow," In [101]: print(data) a,b,c 4,apple,bat, 8,orange,cow, In [102]: pd.read_csv(StringIO(data), usecols=["b", "c"]) Out[102]: b c 4 bat NaN 8 cow NaN In [103]: pd.read_csv(StringIO(data), usecols=["b", "c"], index_col=0) Out[103]: b c 4 bat NaN 8 cow NaNDate Handling# Specifying date columns#
To better facilitate working with datetime data, read_csv()
uses the keyword arguments parse_dates
and date_format
to allow users to specify a variety of columns and date/time formats to turn the input text data into datetime
objects.
The simplest case is to just pass in parse_dates=True
:
In [104]: with open("foo.csv", mode="w") as f: .....: f.write("date,A,B,C\n20090101,a,1,2\n20090102,b,3,4\n20090103,c,4,5") .....: # Use a column as an index, and parse it as dates. In [105]: df = pd.read_csv("foo.csv", index_col=0, parse_dates=True) In [106]: df Out[106]: A B C date 2009-01-01 a 1 2 2009-01-02 b 3 4 2009-01-03 c 4 5 # These are Python datetime objects In [107]: df.index Out[107]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', name='date', freq=None)
It is often the case that we may want to store date and time data separately, or store various date fields separately. the parse_dates
keyword can be used to specify a combination of columns to parse the dates and/or times from.
You can specify a list of column lists to parse_dates
, the resulting date columns will be prepended to the output (so as to not affect the existing column order) and the new column names will be the concatenation of the component column names:
In [108]: data = ( .....: "KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" .....: "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" .....: "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" .....: "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" .....: "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" .....: "KORD,19990127, 23:00:00, 22:56:00, -0.5900" .....: ) .....: In [109]: with open("tmp.csv", "w") as fh: .....: fh.write(data) .....: In [110]: df = pd.read_csv("tmp.csv", header=None, parse_dates=[[1, 2], [1, 3]]) In [111]: df Out[111]: 1_2 1_3 0 4 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
By default the parser removes the component date columns, but you can choose to retain them via the keep_date_col
keyword:
In [112]: df = pd.read_csv( .....: "tmp.csv", header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True .....: ) .....: In [113]: df Out[113]: 1_2 1_3 0 ... 2 3 4 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD ... 19:00:00 18:56:00 0.81 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD ... 20:00:00 19:56:00 0.01 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD ... 21:00:00 20:56:00 -0.59 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD ... 21:00:00 21:18:00 -0.99 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD ... 22:00:00 21:56:00 -0.59 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD ... 23:00:00 22:56:00 -0.59 [6 rows x 7 columns]
Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other words, parse_dates=[1, 2]
indicates that the second and third columns should each be parsed as separate date columns while parse_dates=[[1, 2]]
means the two columns should be parsed into a single column.
You can also use a dict to specify custom name columns:
In [114]: date_spec = {"nominal": [1, 2], "actual": [1, 3]} In [115]: df = pd.read_csv("tmp.csv", header=None, parse_dates=date_spec) In [116]: df Out[116]: nominal actual 0 4 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column is prepended to the data. The index_col
specification is based off of this new set of columns rather than the original data columns:
In [117]: date_spec = {"nominal": [1, 2], "actual": [1, 3]} In [118]: df = pd.read_csv( .....: "tmp.csv", header=None, parse_dates=date_spec, index_col=0 .....: ) # index is the nominal column .....: In [119]: df Out[119]: actual 0 4 nominal 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
Note
If a column or index contains an unparsable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use to_datetime()
after pd.read_csv
.
Note
read_csv has a fast_path for parsing datetime strings in iso8601 format, e.g â2000-01-01T00:01:02+00:00â and similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly faster, ~20x has been observed.
Deprecated since version 2.2.0: Combining date columns inside read_csv is deprecated. Use pd.to_datetime
on the relevant result columns instead.
Finally, the parser allows you to specify a custom date_format
. Performance-wise, you should try these methods of parsing dates in order:
If you know the format, use date_format
, e.g.: date_format="%d/%m/%Y"
or date_format={column_name: "%d/%m/%Y"}
.
If you different formats for different columns, or want to pass any extra options (such as utc
) to to_datetime
, then you should read in your data as object
dtype, and then use to_datetime
.
pandas cannot natively represent a column or index with mixed timezones. If your CSV file contains columns with a mixture of timezones, the default result will be an object-dtype column with strings, even with parse_dates
. To parse the mixed-timezone values as a datetime column, read in as object
dtype and then call to_datetime()
with utc=True
.
In [120]: content = """\ .....: a .....: 2000-01-01T00:00:00+05:00 .....: 2000-01-01T00:00:00+06:00""" .....: In [121]: df = pd.read_csv(StringIO(content)) In [122]: df["a"] = pd.to_datetime(df["a"], utc=True) In [123]: df["a"] Out[123]: 0 1999-12-31 19:00:00+00:00 1 1999-12-31 18:00:00+00:00 Name: a, dtype: datetime64[ns, UTC]Inferring datetime format#
Here are some examples of datetime strings that can be guessed (all representing December 30th, 2011 at 00:00:00):
â20111230â
â2011/12/30â
â20111230 00:00:00â
â12/30/2011 00:00:00â
â30/Dec/2011 00:00:00â
â30/December/2011 00:00:00â
Note that format inference is sensitive to dayfirst
. With dayfirst=True
, it will guess â01/12/2011â to be December 1st. With dayfirst=False
(default) it will guess â01/12/2011â to be January 12th.
If you try to parse a column of date strings, pandas will attempt to guess the format from the first non-NaN element, and will then parse the rest of the column with that format. If pandas fails to guess the format (for example if your first string is '01 December US/Pacific 2000'
), then a warning will be raised and each row will be parsed individually by dateutil.parser.parse
. The safest way to parse dates is to explicitly set format=
.
In [124]: df = pd.read_csv( .....: "foo.csv", .....: index_col=0, .....: parse_dates=True, .....: ) .....: In [125]: df Out[125]: A B C date 2009-01-01 a 1 2 2009-01-02 b 3 4 2009-01-03 c 4 5
In the case that you have mixed datetime formats within the same column, you can pass format='mixed'
In [126]: data = StringIO("date\n12 Jan 2000\n2000-01-13\n") In [127]: df = pd.read_csv(data) In [128]: df['date'] = pd.to_datetime(df['date'], format='mixed') In [129]: df Out[129]: date 0 2000-01-12 1 2000-01-13
or, if your datetime formats are all ISO8601 (possibly not identically-formatted):
In [130]: data = StringIO("date\n2020-01-01\n2020-01-01 03:00\n") In [131]: df = pd.read_csv(data) In [132]: df['date'] = pd.to_datetime(df['date'], format='ISO8601') In [133]: df Out[133]: date 0 2020-01-01 00:00:00 1 2020-01-01 03:00:00International date formats#
While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For convenience, a dayfirst
keyword is provided:
In [134]: data = "date,value,cat\n1/6/2000,5,a\n2/6/2000,10,b\n3/6/2000,15,c" In [135]: print(data) date,value,cat 1/6/2000,5,a 2/6/2000,10,b 3/6/2000,15,c In [136]: with open("tmp.csv", "w") as fh: .....: fh.write(data) .....: In [137]: pd.read_csv("tmp.csv", parse_dates=[0]) Out[137]: date value cat 0 2000-01-06 5 a 1 2000-02-06 10 b 2 2000-03-06 15 c In [138]: pd.read_csv("tmp.csv", dayfirst=True, parse_dates=[0]) Out[138]: date value cat 0 2000-06-01 5 a 1 2000-06-02 10 b 2 2000-06-03 15 cWriting CSVs to binary file objects#
Added in version 1.2.0.
df.to_csv(..., mode="wb")
allows writing a CSV to a file object opened binary mode. In most cases, it is not necessary to specify mode
as Pandas will auto-detect whether the file object is opened in text or binary mode.
In [139]: import io In [140]: data = pd.DataFrame([0, 1, 2]) In [141]: buffer = io.BytesIO() In [142]: data.to_csv(buffer, encoding="utf-8", compression="gzip")Specifying method for floating-point conversion#
The parameter float_precision
can be specified in order to use a specific floating-point converter during parsing with the C engine. The options are the ordinary converter, the high-precision converter, and the round-trip converter (which is guaranteed to round-trip values after writing to a file). For example:
In [143]: val = "0.3066101993807095471566981359501369297504425048828125" In [144]: data = "a,b,c\n1,2,{0}".format(val) In [145]: abs( .....: pd.read_csv( .....: StringIO(data), .....: engine="c", .....: float_precision=None, .....: )["c"][0] - float(val) .....: ) .....: Out[145]: 5.551115123125783e-17 In [146]: abs( .....: pd.read_csv( .....: StringIO(data), .....: engine="c", .....: float_precision="high", .....: )["c"][0] - float(val) .....: ) .....: Out[146]: 5.551115123125783e-17 In [147]: abs( .....: pd.read_csv(StringIO(data), engine="c", float_precision="round_trip")["c"][0] .....: - float(val) .....: ) .....: Out[147]: 0.0Thousand separators#
For large numbers that have been written with a thousands separator, you can set the thousands
keyword to a string of length 1 so that integers will be parsed correctly:
By default, numbers with a thousands separator will be parsed as strings:
In [148]: data = ( .....: "ID|level|category\n" .....: "Patient1|123,000|x\n" .....: "Patient2|23,000|y\n" .....: "Patient3|1,234,018|z" .....: ) .....: In [149]: with open("tmp.csv", "w") as fh: .....: fh.write(data) .....: In [150]: df = pd.read_csv("tmp.csv", sep="|") In [151]: df Out[151]: ID level category 0 Patient1 123,000 x 1 Patient2 23,000 y 2 Patient3 1,234,018 z In [152]: df.level.dtype Out[152]: dtype('O')
The thousands
keyword allows integers to be parsed correctly:
In [153]: df = pd.read_csv("tmp.csv", sep="|", thousands=",") In [154]: df Out[154]: ID level category 0 Patient1 123000 x 1 Patient2 23000 y 2 Patient3 1234018 z In [155]: df.level.dtype Out[155]: dtype('int64')NA values#
To control which values are parsed as missing values (which are signified by NaN
), specify a string in na_values
. If you specify a list of strings, then all values in it are considered to be missing values. If you specify a number (a float
, like 5.0
or an integer
like 5
), the corresponding equivalent values will also imply a missing value (in this case effectively [5.0, 5]
are recognized as NaN
).
To completely override the default values that are recognized as missing, specify keep_default_na=False
.
The default NaN
recognized values are ['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A', '#N/A', 'N/A', 'n/a', 'NA', '<NA>', '#NA', 'NULL', 'null', 'NaN', '-NaN', 'nan', '-nan', 'None', '']
.
Let us consider some examples:
pd.read_csv("path_to_file.csv", na_values=[5])
In the example above 5
and 5.0
will be recognized as NaN
, in addition to the defaults. A string will first be interpreted as a numerical 5
, then as a NaN
.
pd.read_csv("path_to_file.csv", keep_default_na=False, na_values=[""])
Above, only an empty field will be recognized as NaN
.
pd.read_csv("path_to_file.csv", keep_default_na=False, na_values=["NA", "0"])
Above, both NA
and 0
as strings are NaN
.
pd.read_csv("path_to_file.csv", na_values=["Nope"])
The default values, in addition to the string "Nope"
are recognized as NaN
.
inf
like values will be parsed as np.inf
(positive infinity), and -inf
as -np.inf
(negative infinity). These will ignore the case of the value, meaning Inf
, will also be parsed as np.inf
.
The common values True
, False
, TRUE
, and FALSE
are all recognized as boolean. Occasionally you might want to recognize other values as being boolean. To do this, use the true_values
and false_values
options as follows:
In [156]: data = "a,b,c\n1,Yes,2\n3,No,4" In [157]: print(data) a,b,c 1,Yes,2 3,No,4 In [158]: pd.read_csv(StringIO(data)) Out[158]: a b c 0 1 Yes 2 1 3 No 4 In [159]: pd.read_csv(StringIO(data), true_values=["Yes"], false_values=["No"]) Out[159]: a b c 0 1 True 2 1 3 False 4Handling âbadâ lines#
Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values filled in the trailing fields. Lines with too many fields will raise an error by default:
In [160]: data = "a,b,c\n1,2,3\n4,5,6,7\n8,9,10" In [161]: pd.read_csv(StringIO(data)) --------------------------------------------------------------------------- ParserError Traceback (most recent call last) Cell In[161], line 1 ----> 1 pd.read_csv(StringIO(data)) File ~/work/pandas/pandas/pandas/io/parsers/readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1013 kwds_defaults = _refine_defaults_read( 1014 dialect, 1015 delimiter, (...) 1022 dtype_backend=dtype_backend, 1023 ) 1024 kwds.update(kwds_defaults) -> 1026 return _read(filepath_or_buffer, kwds) File ~/work/pandas/pandas/pandas/io/parsers/readers.py:626, in _read(filepath_or_buffer, kwds) 623 return parser 625 with parser: --> 626 return parser.read(nrows) File ~/work/pandas/pandas/pandas/io/parsers/readers.py:1923, in TextFileReader.read(self, nrows) 1916 nrows = validate_integer("nrows", nrows) 1917 try: 1918 # error: "ParserBase" has no attribute "read" 1919 ( 1920 index, 1921 columns, 1922 col_dict, -> 1923 ) = self._engine.read( # type: ignore[attr-defined] 1924 nrows 1925 ) 1926 except Exception: 1927 self.close() File ~/work/pandas/pandas/pandas/io/parsers/c_parser_wrapper.py:234, in CParserWrapper.read(self, nrows) 232 try: 233 if self.low_memory: --> 234 chunks = self._reader.read_low_memory(nrows) 235 # destructive to chunks 236 data = _concatenate_chunks(chunks) File ~/work/pandas/pandas/pandas/_libs/parsers.pyx:838, in pandas._libs.parsers.TextReader.read_low_memory() File ~/work/pandas/pandas/pandas/_libs/parsers.pyx:905, in pandas._libs.parsers.TextReader._read_rows() File ~/work/pandas/pandas/pandas/_libs/parsers.pyx:874, in pandas._libs.parsers.TextReader._tokenize_rows() File ~/work/pandas/pandas/pandas/_libs/parsers.pyx:891, in pandas._libs.parsers.TextReader._check_tokenize_status() File ~/work/pandas/pandas/pandas/_libs/parsers.pyx:2061, in pandas._libs.parsers.raise_parser_error() ParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4
You can elect to skip bad lines:
In [162]: data = "a,b,c\n1,2,3\n4,5,6,7\n8,9,10" In [163]: pd.read_csv(StringIO(data), on_bad_lines="skip") Out[163]: a b c 0 1 2 3 1 8 9 10
Added in version 1.4.0.
Or pass a callable function to handle the bad line if engine="python"
. The bad line will be a list of strings that was split by the sep
:
In [164]: external_list = [] In [165]: def bad_lines_func(line): .....: external_list.append(line) .....: return line[-3:] .....: In [166]: external_list Out[166]: []
Note
The callable function will handle only a line with too many fields. Bad lines caused by other errors will be silently skipped.
In [167]: bad_lines_func = lambda line: print(line) In [168]: data = 'name,type\nname a,a is of type a\nname b,"b\" is of type b"' In [169]: data Out[169]: 'name,type\nname a,a is of type a\nname b,"b" is of type b"' In [170]: pd.read_csv(StringIO(data), on_bad_lines=bad_lines_func, engine="python") Out[170]: name type 0 name a a is of type a
The line was not processed in this case, as a âbad lineâ here is caused by an escape character.
You can also use the usecols
parameter to eliminate extraneous column data that appear in some lines but not others:
In [171]: pd.read_csv(StringIO(data), usecols=[0, 1, 2]) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[171], line 1 ----> 1 pd.read_csv(StringIO(data), usecols=[0, 1, 2]) File ~/work/pandas/pandas/pandas/io/parsers/readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1013 kwds_defaults = _refine_defaults_read( 1014 dialect, 1015 delimiter, (...) 1022 dtype_backend=dtype_backend, 1023 ) 1024 kwds.update(kwds_defaults) -> 1026 return _read(filepath_or_buffer, kwds) File ~/work/pandas/pandas/pandas/io/parsers/readers.py:620, in _read(filepath_or_buffer, kwds) 617 _validate_names(kwds.get("names", None)) 619 # Create the parser. --> 620 parser = TextFileReader(filepath_or_buffer, **kwds) 622 if chunksize or iterator: 623 return parser File ~/work/pandas/pandas/pandas/io/parsers/readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds) 1617 self.options["has_index_names"] = kwds["has_index_names"] 1619 self.handles: IOHandles | None = None -> 1620 self._engine = self._make_engine(f, self.engine) File ~/work/pandas/pandas/pandas/io/parsers/readers.py:1898, in TextFileReader._make_engine(self, f, engine) 1895 raise ValueError(msg) 1897 try: -> 1898 return mapping[engine](f, **self.options) 1899 except Exception: 1900 if self.handles is not None: File ~/work/pandas/pandas/pandas/io/parsers/c_parser_wrapper.py:155, in CParserWrapper.__init__(self, src, **kwds) 152 # error: Cannot determine type of 'names' 153 if len(self.names) < len(usecols): # type: ignore[has-type] 154 # error: Cannot determine type of 'names' --> 155 self._validate_usecols_names( 156 usecols, 157 self.names, # type: ignore[has-type] 158 ) 160 # error: Cannot determine type of 'names' 161 self._validate_parse_dates_presence(self.names) # type: ignore[has-type] File ~/work/pandas/pandas/pandas/io/parsers/base_parser.py:988, in ParserBase._validate_usecols_names(self, usecols, names) 986 missing = [c for c in usecols if c not in names] 987 if len(missing) > 0: --> 988 raise ValueError( 989 f"Usecols do not match columns, columns expected but not found: " 990 f"{missing}" 991 ) 993 return usecols ValueError: Usecols do not match columns, columns expected but not found: [0, 1, 2]
In case you want to keep all data including the lines with too many fields, you can specify a sufficient number of names
. This ensures that lines with not enough fields are filled with NaN
.
In [172]: pd.read_csv(StringIO(data), names=['a', 'b', 'c', 'd']) Out[172]: a b c d 0 name type NaN NaN 1 name a a is of type a NaN NaN 2 name b b is of type b" NaN NaNDialect#
The dialect
keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but you can specify either the dialect name or a csv.Dialect
instance.
Suppose you had data with unenclosed quotes:
In [173]: data = "label1,label2,label3\n" 'index1,"a,c,e\n' "index2,b,d,f" In [174]: print(data) label1,label2,label3 index1,"a,c,e index2,b,d,f
By default, read_csv
uses the Excel dialect and treats the double quote as the quote character, which causes it to fail when it finds a newline before it finds the closing double quote.
We can get around this using dialect
:
In [175]: import csv In [176]: dia = csv.excel() In [177]: dia.quoting = csv.QUOTE_NONE In [178]: pd.read_csv(StringIO(data), dialect=dia) Out[178]: label1 label2 label3 index1 "a c e index2 b d f
All of the dialect options can be specified separately by keyword arguments:
In [179]: data = "a,b,c~1,2,3~4,5,6" In [180]: pd.read_csv(StringIO(data), lineterminator="~") Out[180]: a b c 0 1 2 3 1 4 5 6
Another common dialect option is skipinitialspace
, to skip any whitespace after a delimiter:
In [181]: data = "a, b, c\n1, 2, 3\n4, 5, 6" In [182]: print(data) a, b, c 1, 2, 3 4, 5, 6 In [183]: pd.read_csv(StringIO(data), skipinitialspace=True) Out[183]: a b c 0 1 2 3 1 4 5 6
The parsers make every attempt to âdo the right thingâ and not be fragile. Type inference is a pretty big deal. If a column can be coerced to integer dtype without altering the contents, the parser will do so. Any non-numeric columns will come through as object dtype as with the rest of pandas objects.
Quoting and Escape Characters#Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use backslashes; to properly parse this data, you should pass the escapechar
option:
In [184]: data = 'a,b\n"hello, \\"Bob\\", nice to see you",5' In [185]: print(data) a,b "hello, \"Bob\", nice to see you",5 In [186]: pd.read_csv(StringIO(data), escapechar="\\") Out[186]: a b 0 hello, "Bob", nice to see you 5Files with fixed width columns#
While read_csv()
reads delimited data, the read_fwf()
function works with data files that have known and fixed column widths. The function parameters to read_fwf
are largely the same as read_csv
with two extra parameters, and a different usage of the delimiter
parameter:
colspecs
: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value âinferâ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data. Default behavior, if not specified, is to infer.
widths
: A list of field widths which can be used instead of âcolspecsâ if the intervals are contiguous.
delimiter
: Characters to consider as filler characters in the fixed-width file. Can be used to specify the filler character of the fields if it is not spaces (e.g., â~â).
Consider a typical fixed-width data file:
In [187]: data1 = ( .....: "id8141 360.242940 149.910199 11950.7\n" .....: "id1594 444.953632 166.985655 11788.4\n" .....: "id1849 364.136849 183.628767 11806.2\n" .....: "id1230 413.836124 184.375703 11916.8\n" .....: "id1948 502.953953 173.237159 12468.3" .....: ) .....: In [188]: with open("bar.csv", "w") as f: .....: f.write(data1) .....:
In order to parse this file into a DataFrame
, we simply need to supply the column specifications to the read_fwf
function along with the file name:
# Column specifications are a list of half-intervals In [189]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)] In [190]: df = pd.read_fwf("bar.csv", colspecs=colspecs, header=None, index_col=0) In [191]: df Out[191]: 1 2 3 0 id8141 360.242940 149.910199 11950.7 id1594 444.953632 166.985655 11788.4 id1849 364.136849 183.628767 11806.2 id1230 413.836124 184.375703 11916.8 id1948 502.953953 173.237159 12468.3
Note how the parser automatically picks column names X.<column number> when header=None
argument is specified. Alternatively, you can supply just the column widths for contiguous columns:
# Widths are a list of integers In [192]: widths = [6, 14, 13, 10] In [193]: df = pd.read_fwf("bar.csv", widths=widths, header=None) In [194]: df Out[194]: 0 1 2 3 0 id8141 360.242940 149.910199 11950.7 1 id1594 444.953632 166.985655 11788.4 2 id1849 364.136849 183.628767 11806.2 3 id1230 413.836124 184.375703 11916.8 4 id1948 502.953953 173.237159 12468.3
The parser will take care of extra white spaces around the columns so itâs ok to have extra separation between the columns in the file.
By default, read_fwf
will try to infer the fileâs colspecs
by using the first 100 rows of the file. It can do it only in cases when the columns are aligned and correctly separated by the provided delimiter
(default delimiter is whitespace).
In [195]: df = pd.read_fwf("bar.csv", header=None, index_col=0) In [196]: df Out[196]: 1 2 3 0 id8141 360.242940 149.910199 11950.7 id1594 444.953632 166.985655 11788.4 id1849 364.136849 183.628767 11806.2 id1230 413.836124 184.375703 11916.8 id1948 502.953953 173.237159 12468.3
read_fwf
supports the dtype
parameter for specifying the types of parsed columns to be different from the inferred type.
In [197]: pd.read_fwf("bar.csv", header=None, index_col=0).dtypes Out[197]: 1 float64 2 float64 3 float64 dtype: object In [198]: pd.read_fwf("bar.csv", header=None, dtype={2: "object"}).dtypes Out[198]: 0 object 1 float64 2 object 3 float64 dtype: objectIndexes# Files with an âimplicitâ index column#
Consider a file with one less entry in the header than the number of data column:
In [199]: data = "A,B,C\n20090101,a,1,2\n20090102,b,3,4\n20090103,c,4,5" In [200]: print(data) A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 In [201]: with open("foo.csv", "w") as f: .....: f.write(data) .....:
In this special case, read_csv
assumes that the first column is to be used as the index of the DataFrame
:
In [202]: pd.read_csv("foo.csv") Out[202]: A B C 20090101 a 1 2 20090102 b 3 4 20090103 c 4 5
Note that the dates werenât automatically parsed. In that case you would need to do as before:
In [203]: df = pd.read_csv("foo.csv", parse_dates=True) In [204]: df.index Out[204]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', freq=None)Reading an index with a
MultiIndex
#
Suppose you have data indexed by two columns:
In [205]: data = 'year,indiv,zit,xit\n1977,"A",1.2,.6\n1977,"B",1.5,.5' In [206]: print(data) year,indiv,zit,xit 1977,"A",1.2,.6 1977,"B",1.5,.5 In [207]: with open("mindex_ex.csv", mode="w") as f: .....: f.write(data) .....:
The index_col
argument to read_csv
can take a list of column numbers to turn multiple columns into a MultiIndex
for the index of the returned object:
In [208]: df = pd.read_csv("mindex_ex.csv", index_col=[0, 1]) In [209]: df Out[209]: zit xit year indiv 1977 A 1.2 0.6 B 1.5 0.5 In [210]: df.loc[1977] Out[210]: zit xit indiv A 1.2 0.6 B 1.5 0.5Reading columns with a
MultiIndex
#
By specifying list of row locations for the header
argument, you can read in a MultiIndex
for the columns. Specifying non-consecutive rows will skip the intervening rows.
In [211]: mi_idx = pd.MultiIndex.from_arrays([[1, 2, 3, 4], list("abcd")], names=list("ab")) In [212]: mi_col = pd.MultiIndex.from_arrays([[1, 2], list("ab")], names=list("cd")) In [213]: df = pd.DataFrame(np.ones((4, 2)), index=mi_idx, columns=mi_col) In [214]: df.to_csv("mi.csv") In [215]: print(open("mi.csv").read()) c,,1,2 d,,a,b a,b,, 1,a,1.0,1.0 2,b,1.0,1.0 3,c,1.0,1.0 4,d,1.0,1.0 In [216]: pd.read_csv("mi.csv", header=[0, 1, 2, 3], index_col=[0, 1]) Out[216]: c 1 2 d a b a Unnamed: 2_level_2 Unnamed: 3_level_2 1 1.0 1.0 2 b 1.0 1.0 3 c 1.0 1.0 4 d 1.0 1.0
read_csv
is also able to interpret a more common format of multi-columns indices.
In [217]: data = ",a,a,a,b,c,c\n,q,r,s,t,u,v\none,1,2,3,4,5,6\ntwo,7,8,9,10,11,12" In [218]: print(data) ,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12 In [219]: with open("mi2.csv", "w") as fh: .....: fh.write(data) .....: In [220]: pd.read_csv("mi2.csv", header=[0, 1], index_col=0) Out[220]: a b c q r s t u v one 1 2 3 4 5 6 two 7 8 9 10 11 12
Note
If an index_col
is not specified (e.g. you donât have an index, or wrote it with df.to_csv(..., index=False)
, then any names
on the columns index will be lost.
read_csv
is capable of inferring delimited (not necessarily comma-separated) files, as pandas uses the csv.Sniffer
class of the csv module. For this, you have to specify sep=None
.
In [221]: df = pd.DataFrame(np.random.randn(10, 4)) In [222]: df.to_csv("tmp2.csv", sep=":", index=False) In [223]: pd.read_csv("tmp2.csv", sep=None, engine="python") Out[223]: 0 1 2 3 0 0.469112 -0.282863 -1.509059 -1.135632 1 1.212112 -0.173215 0.119209 -1.044236 2 -0.861849 -2.104569 -0.494929 1.071804 3 0.721555 -0.706771 -1.039575 0.271860 4 -0.424972 0.567020 0.276232 -1.087401 5 -0.673690 0.113648 -1.478427 0.524988 6 0.404705 0.577046 -1.715002 -1.039268 7 -0.370647 -1.157892 -1.344312 0.844885 8 1.075770 -0.109050 1.643563 -1.469388 9 0.357021 -0.674600 -1.776904 -0.968914Reading multiple files to create a single DataFrame#
Itâs best to use concat()
to combine multiple files. See the cookbook for an example.
Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory, such as the following:
In [224]: df = pd.DataFrame(np.random.randn(10, 4)) In [225]: df.to_csv("tmp.csv", index=False) In [226]: table = pd.read_csv("tmp.csv") In [227]: table Out[227]: 0 1 2 3 0 -1.294524 0.413738 0.276662 -0.472035 1 -0.013960 -0.362543 -0.006154 -0.923061 2 0.895717 0.805244 -1.206412 2.565646 3 1.431256 1.340309 -1.170299 -0.226169 4 0.410835 0.813850 0.132003 -0.827317 5 -0.076467 -1.187678 1.130127 -1.436737 6 -1.413681 1.607920 1.024180 0.569605 7 0.875906 -2.211372 0.974466 -2.006747 8 -0.410001 -0.078638 0.545952 -1.219217 9 -1.226825 0.769804 -1.281247 -0.727707
By specifying a chunksize
to read_csv
, the return value will be an iterable object of type TextFileReader
:
In [228]: with pd.read_csv("tmp.csv", chunksize=4) as reader: .....: print(reader) .....: for chunk in reader: .....: print(chunk) .....: <pandas.io.parsers.readers.TextFileReader object at 0x7f10516496c0> 0 1 2 3 0 -1.294524 0.413738 0.276662 -0.472035 1 -0.013960 -0.362543 -0.006154 -0.923061 2 0.895717 0.805244 -1.206412 2.565646 3 1.431256 1.340309 -1.170299 -0.226169 0 1 2 3 4 0.410835 0.813850 0.132003 -0.827317 5 -0.076467 -1.187678 1.130127 -1.436737 6 -1.413681 1.607920 1.024180 0.569605 7 0.875906 -2.211372 0.974466 -2.006747 0 1 2 3 8 -0.410001 -0.078638 0.545952 -1.219217 9 -1.226825 0.769804 -1.281247 -0.727707
Changed in version 1.2: read_csv/json/sas
return a context-manager when iterating through a file.
Specifying iterator=True
will also return the TextFileReader
object:
In [229]: with pd.read_csv("tmp.csv", iterator=True) as reader: .....: print(reader.get_chunk(5)) .....: 0 1 2 3 0 -1.294524 0.413738 0.276662 -0.472035 1 -0.013960 -0.362543 -0.006154 -0.923061 2 0.895717 0.805244 -1.206412 2.565646 3 1.431256 1.340309 -1.170299 -0.226169 4 0.410835 0.813850 0.132003 -0.827317Specifying the parser engine#
Pandas currently supports three engines, the C engine, the python engine, and an experimental pyarrow engine (requires the pyarrow
package). In general, the pyarrow engine is fastest on larger workloads and is equivalent in speed to the C engine on most other workloads. The python engine tends to be slower than the pyarrow and C engines on most workloads. However, the pyarrow engine is much less robust than the C engine, which lacks a few features compared to the Python engine.
Where possible, pandas uses the C parser (specified as engine='c'
), but it may fall back to Python if C-unsupported options are specified.
Currently, options unsupported by the C and pyarrow engines include:
sep
other than a single character (e.g. regex separators)
skipfooter
sep=None
with delim_whitespace=False
Specifying any of the above options will produce a ParserWarning
unless the python engine is selected explicitly using engine='python'
.
Options that are unsupported by the pyarrow engine which are not covered by the list above include:
float_precision
chunksize
comment
nrows
thousands
memory_map
dialect
on_bad_lines
delim_whitespace
quoting
lineterminator
converters
decimal
iterator
dayfirst
infer_datetime_format
verbose
skipinitialspace
low_memory
Specifying these options with engine='pyarrow'
will raise a ValueError
.
You can pass in a URL to read or write remote files to many of pandasâ IO functions - the following example shows reading a CSV file:
df = pd.read_csv("https://download.bls.gov/pub/time.series/cu/cu.item", sep="\t")
Added in version 1.3.0.
A custom header can be sent alongside HTTP(s) requests by passing a dictionary of header key value mappings to the storage_options
keyword argument as shown below:
headers = {"User-Agent": "pandas"} df = pd.read_csv( "https://download.bls.gov/pub/time.series/cu/cu.item", sep="\t", storage_options=headers )
All URLs which are not local files or HTTP(s) are handled by fsspec, if installed, and its various filesystem implementations (including Amazon S3, Google Cloud, SSH, FTP, webHDFSâ¦). Some of these implementations will require additional packages to be installed, for example S3 URLs require the s3fs library:
df = pd.read_json("s3://pandas-test/adatafile.json")
When dealing with remote storage systems, you might need extra configuration with environment variables or config files in special locations. For example, to access data in your S3 bucket, you will need to define credentials in one of the several ways listed in the S3Fs documentation. The same is true for several of the storage backends, and you should follow the links at fsimpl1 for implementations built into fsspec
and fsimpl2 for those not included in the main fsspec
distribution.
You can also pass parameters directly to the backend driver. Since fsspec
does not utilize the AWS_S3_HOST
environment variable, we can directly define a dictionary containing the endpoint_url and pass the object into the storage option parameter:
storage_options = {"client_kwargs": {"endpoint_url": "http://127.0.0.1:5555"}}} df = pd.read_json("s3://pandas-test/test-1", storage_options=storage_options)
More sample configurations and documentation can be found at S3Fs documentation.
If you do not have S3 credentials, you can still access public data by specifying an anonymous connection, such as
Added in version 1.2.0.
pd.read_csv( "s3://ncei-wcsd-archive/data/processed/SH1305/18kHz/SaKe2013" "-D20130523-T080854_to_SaKe2013-D20130523-T085643.csv", storage_options={"anon": True}, )
fsspec
also allows complex URLs, for accessing data in compressed archives, local caching of files, and more. To locally cache the above example, you would modify the call to
pd.read_csv( "simplecache::s3://ncei-wcsd-archive/data/processed/SH1305/18kHz/" "SaKe2013-D20130523-T080854_to_SaKe2013-D20130523-T085643.csv", storage_options={"s3": {"anon": True}}, )
where we specify that the âanonâ parameter is meant for the âs3â part of the implementation, not to the caching implementation. Note that this caches to a temporary directory for the duration of the session only, but you can also specify a permanent store.
Writing out data# Writing to CSV format#The Series
and DataFrame
objects have an instance method to_csv
which allows storing the contents of the object as a comma-separated-values file. The function takes a number of arguments. Only the first is required.
path_or_buf
: A string path to the file to write or a file object. If a file object it must be opened with newline=''
sep
: Field delimiter for the output file (default â,â)
na_rep
: A string representation of a missing value (default ââ)
float_format
: Format string for floating point numbers
columns
: Columns to write (default None)
header
: Whether to write out the column names (default True)
index
: whether to write row (index) names (default True)
index_label
: Column label(s) for index column(s) if desired. If None (default), and header
and index
are True, then the index names are used. (A sequence should be given if the DataFrame
uses MultiIndex).
mode
: Python write mode, default âwâ
encoding
: a string representing the encoding to use if the contents are non-ASCII, for Python versions prior to 3
lineterminator
: Character sequence denoting line end (default os.linesep
)
quoting
: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL). Note that if you have set a float_format
then floats are converted to strings and csv.QUOTE_NONNUMERIC will treat them as non-numeric
quotechar
: Character used to quote fields (default âââ)
doublequote
: Control quoting of quotechar
in fields (default True)
escapechar
: Character used to escape sep
and quotechar
when appropriate (default None)
chunksize
: Number of rows to write at a time
date_format
: Format string for datetime objects
The DataFrame
object has an instance method to_string
which allows control over the string representation of the object. All arguments are optional:
buf
default None, for example a StringIO object
columns
default None, which columns to write
col_space
default None, minimum width of each column.
na_rep
default NaN
, representation of NA value
formatters
default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted string
float_format
default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in the DataFrame
.
sparsify
default True, set to False for a DataFrame
with a hierarchical index to print every MultiIndex key at each row.
index_names
default True, will print the names of the indices
index
default True, will print the index (ie, row labels)
header
default True, will print the column labels
justify
default left
, will print column headers left- or right-justified
The Series
object also has a to_string
method, but with only the buf
, na_rep
, float_format
arguments. There is also a length
argument which, if set to True
, will additionally output the length of the Series.
Read and write JSON
format files and strings.
A Series
or DataFrame
can be converted to a valid JSON string. Use to_json
with optional parameters:
path_or_buf
: the pathname or buffer to write the output. This can be None
in which case a JSON string is returned.
orient
:
Series
:
default is index
allowed values are {split
, records
, index
}
DataFrame
:
default is columns
allowed values are {split
, records
, index
, columns
, values
, table
}
The format of the JSON string
split
dict like {index -> [index]; columns -> [columns]; data -> [values]}
records
list like [{column -> value}; ⦠]
index
dict like {index -> {column -> value}}
columns
dict like {column -> {index -> value}}
values
just the values array
table
adhering to the JSON Table Schema
date_format
: string, type of date conversion, âepochâ for timestamp, âisoâ for ISO8601.
double_precision
: The number of decimal places to use when encoding floating point values, default 10.
force_ascii
: force encoded string to be ASCII, default True.
date_unit
: The time unit to encode to, governs timestamp and ISO8601 precision. One of âsâ, âmsâ, âusâ or ânsâ for seconds, milliseconds, microseconds and nanoseconds respectively. Default âmsâ.
default_handler
: The handler to call if an object cannot otherwise be converted to a suitable format for JSON. Takes a single argument, which is the object to convert, and returns a serializable object.
lines
: If records
orient, then will write each record per line as json.
mode
: string, writer mode when writing to path. âwâ for write, âaâ for append. Default âwâ
Note NaN
âs, NaT
âs and None
will be converted to null
and datetime
objects will be converted based on the date_format
and date_unit
parameters.
In [230]: dfj = pd.DataFrame(np.random.randn(5, 2), columns=list("AB")) In [231]: json = dfj.to_json() In [232]: json Out[232]: '{"A":{"0":-0.1213062281,"1":0.6957746499,"2":0.9597255933,"3":-0.6199759194,"4":-0.7323393705},"B":{"0":-0.0978826728,"1":0.3417343559,"2":-1.1103361029,"3":0.1497483186,"4":0.6877383895}}'Orient options#
There are a number of different options for the format of the resulting JSON file / string. Consider the following DataFrame
and Series
:
In [233]: dfjo = pd.DataFrame( .....: dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)), .....: columns=list("ABC"), .....: index=list("xyz"), .....: ) .....: In [234]: dfjo Out[234]: A B C x 1 4 7 y 2 5 8 z 3 6 9 In [235]: sjo = pd.Series(dict(x=15, y=16, z=17), name="D") In [236]: sjo Out[236]: x 15 y 16 z 17 Name: D, dtype: int64
Column oriented (the default for DataFrame
) serializes the data as nested JSON objects with column labels acting as the primary index:
In [237]: dfjo.to_json(orient="columns") Out[237]: '{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}' # Not available for Series
Index oriented (the default for Series
) similar to column oriented but the index labels are now primary:
In [238]: dfjo.to_json(orient="index") Out[238]: '{"x":{"A":1,"B":4,"C":7},"y":{"A":2,"B":5,"C":8},"z":{"A":3,"B":6,"C":9}}' In [239]: sjo.to_json(orient="index") Out[239]: '{"x":15,"y":16,"z":17}'
Record oriented serializes the data to a JSON array of column -> value records, index labels are not included. This is useful for passing DataFrame
data to plotting libraries, for example the JavaScript library d3.js
:
In [240]: dfjo.to_json(orient="records") Out[240]: '[{"A":1,"B":4,"C":7},{"A":2,"B":5,"C":8},{"A":3,"B":6,"C":9}]' In [241]: sjo.to_json(orient="records") Out[241]: '[15,16,17]'
Value oriented is a bare-bones option which serializes to nested JSON arrays of values only, column and index labels are not included:
In [242]: dfjo.to_json(orient="values") Out[242]: '[[1,4,7],[2,5,8],[3,6,9]]' # Not available for Series
Split oriented serializes to a JSON object containing separate entries for values, index and columns. Name is also included for Series
:
In [243]: dfjo.to_json(orient="split") Out[243]: '{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,6,9]]}' In [244]: sjo.to_json(orient="split") Out[244]: '{"name":"D","index":["x","y","z"],"data":[15,16,17]}'
Table oriented serializes to the JSON Table Schema, allowing for the preservation of metadata including but not limited to dtypes and index names.
Note
Any orient option that encodes to a JSON object will not preserve the ordering of index and column labels during round-trip serialization. If you wish to preserve label ordering use the split
option as it uses ordered containers.
Writing in ISO date format:
In [245]: dfd = pd.DataFrame(np.random.randn(5, 2), columns=list("AB")) In [246]: dfd["date"] = pd.Timestamp("20130101") In [247]: dfd = dfd.sort_index(axis=1, ascending=False) In [248]: json = dfd.to_json(date_format="iso") In [249]: json Out[249]: '{"date":{"0":"2013-01-01T00:00:00.000","1":"2013-01-01T00:00:00.000","2":"2013-01-01T00:00:00.000","3":"2013-01-01T00:00:00.000","4":"2013-01-01T00:00:00.000"},"B":{"0":0.403309524,"1":0.3016244523,"2":-1.3698493577,"3":1.4626960492,"4":-0.8265909164},"A":{"0":0.1764443426,"1":-0.1549507744,"2":-2.1798606054,"3":-0.9542078401,"4":-1.7431609117}}'
Writing in ISO date format, with microseconds:
In [250]: json = dfd.to_json(date_format="iso", date_unit="us") In [251]: json Out[251]: '{"date":{"0":"2013-01-01T00:00:00.000000","1":"2013-01-01T00:00:00.000000","2":"2013-01-01T00:00:00.000000","3":"2013-01-01T00:00:00.000000","4":"2013-01-01T00:00:00.000000"},"B":{"0":0.403309524,"1":0.3016244523,"2":-1.3698493577,"3":1.4626960492,"4":-0.8265909164},"A":{"0":0.1764443426,"1":-0.1549507744,"2":-2.1798606054,"3":-0.9542078401,"4":-1.7431609117}}'
Epoch timestamps, in seconds:
In [252]: json = dfd.to_json(date_format="epoch", date_unit="s") In [253]: json Out[253]: '{"date":{"0":1,"1":1,"2":1,"3":1,"4":1},"B":{"0":0.403309524,"1":0.3016244523,"2":-1.3698493577,"3":1.4626960492,"4":-0.8265909164},"A":{"0":0.1764443426,"1":-0.1549507744,"2":-2.1798606054,"3":-0.9542078401,"4":-1.7431609117}}'
Writing to a file, with a date index and a date column:
In [254]: dfj2 = dfj.copy() In [255]: dfj2["date"] = pd.Timestamp("20130101") In [256]: dfj2["ints"] = list(range(5)) In [257]: dfj2["bools"] = True In [258]: dfj2.index = pd.date_range("20130101", periods=5) In [259]: dfj2.to_json("test.json") In [260]: with open("test.json") as fh: .....: print(fh.read()) .....: {"A":{"1356998400000":-0.1213062281,"1357084800000":0.6957746499,"1357171200000":0.9597255933,"1357257600000":-0.6199759194,"1357344000000":-0.7323393705},"B":{"1356998400000":-0.0978826728,"1357084800000":0.3417343559,"1357171200000":-1.1103361029,"1357257600000":0.1497483186,"1357344000000":0.6877383895},"date":{"1356998400000":1356,"1357084800000":1356,"1357171200000":1356,"1357257600000":1356,"1357344000000":1356},"ints":{"1356998400000":0,"1357084800000":1,"1357171200000":2,"1357257600000":3,"1357344000000":4},"bools":{"1356998400000":true,"1357084800000":true,"1357171200000":true,"1357257600000":true,"1357344000000":true}}Fallback behavior#
If the JSON serializer cannot handle the container contents directly it will fall back in the following manner:
if the dtype is unsupported (e.g. np.complex_
) then the default_handler
, if provided, will be called for each value, otherwise an exception is raised.
if an object is unsupported it will attempt the following:
check if the object has defined a
toDict
method and call it. AtoDict
method should return adict
which will then be JSON serialized.invoke the
default_handler
if one was provided.convert the object to a
dict
by traversing its contents. However this will often fail with anOverflowError
or give unexpected results.
In general the best approach for unsupported objects or dtypes is to provide a default_handler
. For example:
>>> DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json() # raises RuntimeError: Unhandled numpy dtype 15
can be dealt with by specifying a simple default_handler
:
In [261]: pd.DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json(default_handler=str) Out[261]: '{"0":{"0":"(1+0j)","1":"(2+0j)","2":"(1+2j)"}}'Reading JSON#
Reading a JSON string to pandas object can take a number of parameters. The parser will try to parse a DataFrame
if typ
is not supplied or is None
. To explicitly force Series
parsing, pass typ=series
filepath_or_buffer
: a VALID JSON string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, S3, and file. For file URLs, a host is expected. For instance, a local file could be file ://localhost/path/to/table.json
typ
: type of object to recover (series or frame), default âframeâ
orient
:
default is index
allowed values are {split
, records
, index
}
default is columns
allowed values are {split
, records
, index
, columns
, values
, table
}
The format of the JSON string
split
dict like {index -> [index]; columns -> [columns]; data -> [values]}
records
list like [{column -> value} â¦]
index
dict like {index -> {column -> value}}
columns
dict like {column -> {index -> value}}
values
just the values array
table
adhering to the JSON Table Schema
dtype
: if True, infer dtypes, if a dict of column to dtype, then use those, if False
, then donât infer dtypes at all, default is True, apply only to the data.
convert_axes
: boolean, try to convert the axes to the proper dtypes, default is True
convert_dates
: a list of columns to parse for dates; If True
, then try to parse date-like columns, default is True
.
keep_default_dates
: boolean, default True
. If parsing dates, then parse the default date-like columns.
precise_float
: boolean, default False
. Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False
) is to use fast but less precise builtin functionality.
date_unit
: string, the timestamp unit to detect if converting dates. Default None. By default the timestamp precision will be detected, if this is not desired then pass one of âsâ, âmsâ, âusâ or ânsâ to force timestamp precision to seconds, milliseconds, microseconds or nanoseconds respectively.
lines
: reads file as one json object per line.
encoding
: The encoding to use to decode py3 bytes.
chunksize
: when used in combination with lines=True
, return a pandas.api.typing.JsonReader
which reads in chunksize
lines per iteration.
engine
: Either "ujson"
, the built-in JSON parser, or "pyarrow"
which dispatches to pyarrowâs pyarrow.json.read_json
. The "pyarrow"
is only available when lines=True
The parser will raise one of ValueError/TypeError/AssertionError
if the JSON is not parseable.
If a non-default orient
was used when encoding to JSON be sure to pass the same option here so that decoding produces sensible results, see Orient Options for an overview.
The default of convert_axes=True
, dtype=True
, and convert_dates=True
will try to parse the axes, and all of the data into appropriate types, including dates. If you need to override specific dtypes, pass a dict to dtype
. convert_axes
should only be set to False
if you need to preserve string-like numbers (e.g. â1â, â2â) in an axes.
Note
Large integer values may be converted to dates if convert_dates=True
and the data and / or column labels appear âdate-likeâ. The exact threshold depends on the date_unit
specified. âdate-likeâ means that the column label meets one of the following criteria:
it ends with '_at'
it ends with '_time'
it begins with 'timestamp'
it is 'modified'
it is 'date'
Warning
When reading JSON data, automatic coercing into dtypes has some quirks:
an index can be reconstructed in a different order from serialization, that is, the returned order is not guaranteed to be the same as before serialization
a column that was float
data will be converted to integer
if it can be done safely, e.g. a column of 1.
bool columns will be converted to integer
on reconstruction
Thus there are times where you may want to specify specific dtypes via the dtype
keyword argument.
Reading from a JSON string:
In [262]: from io import StringIO In [263]: pd.read_json(StringIO(json)) Out[263]: date B A 0 1 0.403310 0.176444 1 1 0.301624 -0.154951 2 1 -1.369849 -2.179861 3 1 1.462696 -0.954208 4 1 -0.826591 -1.743161
Reading from a file:
In [264]: pd.read_json("test.json") Out[264]: A B date ints bools 2013-01-01 -0.121306 -0.097883 1356 0 True 2013-01-02 0.695775 0.341734 1356 1 True 2013-01-03 0.959726 -1.110336 1356 2 True 2013-01-04 -0.619976 0.149748 1356 3 True 2013-01-05 -0.732339 0.687738 1356 4 True
Donât convert any data (but still convert axes and dates):
In [265]: pd.read_json("test.json", dtype=object).dtypes Out[265]: A object B object date object ints object bools object dtype: object
Specify dtypes for conversion:
In [266]: pd.read_json("test.json", dtype={"A": "float32", "bools": "int8"}).dtypes Out[266]: A float32 B float64 date int64 ints int64 bools int8 dtype: object
Preserve string indices:
In [267]: from io import StringIO In [268]: si = pd.DataFrame( .....: np.zeros((4, 4)), columns=list(range(4)), index=[str(i) for i in range(4)] .....: ) .....: In [269]: si Out[269]: 0 1 2 3 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 In [270]: si.index Out[270]: Index(['0', '1', '2', '3'], dtype='object') In [271]: si.columns Out[271]: Index([0, 1, 2, 3], dtype='int64') In [272]: json = si.to_json() In [273]: sij = pd.read_json(StringIO(json), convert_axes=False) In [274]: sij Out[274]: 0 1 2 3 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 In [275]: sij.index Out[275]: Index(['0', '1', '2', '3'], dtype='object') In [276]: sij.columns Out[276]: Index(['0', '1', '2', '3'], dtype='object')
Dates written in nanoseconds need to be read back in nanoseconds:
In [277]: from io import StringIO In [278]: json = dfj2.to_json(date_unit="ns") # Try to parse timestamps as milliseconds -> Won't Work In [279]: dfju = pd.read_json(StringIO(json), date_unit="ms") In [280]: dfju Out[280]: A B date ints bools 1356998400000000000 -0.121306 -0.097883 1356998400 0 True 1357084800000000000 0.695775 0.341734 1356998400 1 True 1357171200000000000 0.959726 -1.110336 1356998400 2 True 1357257600000000000 -0.619976 0.149748 1356998400 3 True 1357344000000000000 -0.732339 0.687738 1356998400 4 True # Let pandas detect the correct precision In [281]: dfju = pd.read_json(StringIO(json)) In [282]: dfju Out[282]: A B date ints bools 2013-01-01 -0.121306 -0.097883 2013-01-01 0 True 2013-01-02 0.695775 0.341734 2013-01-01 1 True 2013-01-03 0.959726 -1.110336 2013-01-01 2 True 2013-01-04 -0.619976 0.149748 2013-01-01 3 True 2013-01-05 -0.732339 0.687738 2013-01-01 4 True # Or specify that all timestamps are in nanoseconds In [283]: dfju = pd.read_json(StringIO(json), date_unit="ns") In [284]: dfju Out[284]: A B date ints bools 2013-01-01 -0.121306 -0.097883 1356998400 0 True 2013-01-02 0.695775 0.341734 1356998400 1 True 2013-01-03 0.959726 -1.110336 1356998400 2 True 2013-01-04 -0.619976 0.149748 1356998400 3 True 2013-01-05 -0.732339 0.687738 1356998400 4 True
By setting the dtype_backend
argument you can control the default dtypes used for the resulting DataFrame.
In [285]: data = ( .....: '{"a":{"0":1,"1":3},"b":{"0":2.5,"1":4.5},"c":{"0":true,"1":false},"d":{"0":"a","1":"b"},' .....: '"e":{"0":null,"1":6.0},"f":{"0":null,"1":7.5},"g":{"0":null,"1":true},"h":{"0":null,"1":"a"},' .....: '"i":{"0":"12-31-2019","1":"12-31-2019"},"j":{"0":null,"1":null}}' .....: ) .....: In [286]: df = pd.read_json(StringIO(data), dtype_backend="pyarrow") In [287]: df Out[287]: a b c d e f g h i j 0 1 2.5 True a <NA> <NA> <NA> <NA> 12-31-2019 None 1 3 4.5 False b 6 7.5 True a 12-31-2019 None In [288]: df.dtypes Out[288]: a int64[pyarrow] b double[pyarrow] c bool[pyarrow] d string[pyarrow] e int64[pyarrow] f double[pyarrow] g bool[pyarrow] h string[pyarrow] i string[pyarrow] j null[pyarrow] dtype: objectNormalization#
pandas provides a utility function to take a dict or list of dicts and normalize this semi-structured data into a flat table.
In [289]: data = [ .....: {"id": 1, "name": {"first": "Coleen", "last": "Volk"}}, .....: {"name": {"given": "Mark", "family": "Regner"}}, .....: {"id": 2, "name": "Faye Raker"}, .....: ] .....: In [290]: pd.json_normalize(data) Out[290]: id name.first name.last name.given name.family name 0 1.0 Coleen Volk NaN NaN NaN 1 NaN NaN NaN Mark Regner NaN 2 2.0 NaN NaN NaN NaN Faye Raker
In [291]: data = [ .....: { .....: "state": "Florida", .....: "shortname": "FL", .....: "info": {"governor": "Rick Scott"}, .....: "county": [ .....: {"name": "Dade", "population": 12345}, .....: {"name": "Broward", "population": 40000}, .....: {"name": "Palm Beach", "population": 60000}, .....: ], .....: }, .....: { .....: "state": "Ohio", .....: "shortname": "OH", .....: "info": {"governor": "John Kasich"}, .....: "county": [ .....: {"name": "Summit", "population": 1234}, .....: {"name": "Cuyahoga", "population": 1337}, .....: ], .....: }, .....: ] .....: In [292]: pd.json_normalize(data, "county", ["state", "shortname", ["info", "governor"]]) Out[292]: name population state shortname info.governor 0 Dade 12345 Florida FL Rick Scott 1 Broward 40000 Florida FL Rick Scott 2 Palm Beach 60000 Florida FL Rick Scott 3 Summit 1234 Ohio OH John Kasich 4 Cuyahoga 1337 Ohio OH John Kasich
The max_level parameter provides more control over which level to end normalization. With max_level=1 the following snippet normalizes until 1st nesting level of the provided dict.
In [293]: data = [ .....: { .....: "CreatedBy": {"Name": "User001"}, .....: "Lookup": { .....: "TextField": "Some text", .....: "UserField": {"Id": "ID001", "Name": "Name001"}, .....: }, .....: "Image": {"a": "b"}, .....: } .....: ] .....: In [294]: pd.json_normalize(data, max_level=1) Out[294]: CreatedBy.Name Lookup.TextField Lookup.UserField Image.a 0 User001 Some text {'Id': 'ID001', 'Name': 'Name001'} bLine delimited json#
pandas is able to read and write line-delimited json files that are common in data processing pipelines using Hadoop or Spark.
For line-delimited json files, pandas can also return an iterator which reads in chunksize
lines at a time. This can be useful for large files or to read from a stream.
In [295]: from io import StringIO In [296]: jsonl = """ .....: {"a": 1, "b": 2} .....: {"a": 3, "b": 4} .....: """ .....: In [297]: df = pd.read_json(StringIO(jsonl), lines=True) In [298]: df Out[298]: a b 0 1 2 1 3 4 In [299]: df.to_json(orient="records", lines=True) Out[299]: '{"a":1,"b":2}\n{"a":3,"b":4}\n' # reader is an iterator that returns ``chunksize`` lines each iteration In [300]: with pd.read_json(StringIO(jsonl), lines=True, chunksize=1) as reader: .....: reader .....: for chunk in reader: .....: print(chunk) .....: Empty DataFrame Columns: [] Index: [] a b 0 1 2 a b 1 3 4
Line-limited json can also be read using the pyarrow reader by specifying engine="pyarrow"
.
In [301]: from io import BytesIO In [302]: df = pd.read_json(BytesIO(jsonl.encode()), lines=True, engine="pyarrow") In [303]: df Out[303]: a b 0 1 2 1 3 4
Added in version 2.0.0.
Table schema#Table Schema is a spec for describing tabular datasets as a JSON object. The JSON includes information on the field names, types, and other attributes. You can use the orient table
to build a JSON string with two fields, schema
and data
.
In [304]: df = pd.DataFrame( .....: { .....: "A": [1, 2, 3], .....: "B": ["a", "b", "c"], .....: "C": pd.date_range("2016-01-01", freq="d", periods=3), .....: }, .....: index=pd.Index(range(3), name="idx"), .....: ) .....: In [305]: df Out[305]: A B C idx 0 1 a 2016-01-01 1 2 b 2016-01-02 2 3 c 2016-01-03 In [306]: df.to_json(orient="table", date_format="iso") Out[306]: '{"schema":{"fields":[{"name":"idx","type":"integer"},{"name":"A","type":"integer"},{"name":"B","type":"string"},{"name":"C","type":"datetime"}],"primaryKey":["idx"],"pandas_version":"1.4.0"},"data":[{"idx":0,"A":1,"B":"a","C":"2016-01-01T00:00:00.000"},{"idx":1,"A":2,"B":"b","C":"2016-01-02T00:00:00.000"},{"idx":2,"A":3,"B":"c","C":"2016-01-03T00:00:00.000"}]}'
The schema
field contains the fields
key, which itself contains a list of column name to type pairs, including the Index
or MultiIndex
(see below for a list of types). The schema
field also contains a primaryKey
field if the (Multi)index is unique.
The second field, data
, contains the serialized data with the records
orient. The index is included, and any datetimes are ISO 8601 formatted, as required by the Table Schema spec.
The full list of types supported are described in the Table Schema spec. This table shows the mapping from pandas types:
pandas type
Table Schema type
int64
integer
float64
number
bool
boolean
datetime64[ns]
datetime
timedelta64[ns]
duration
categorical
any
object
str
A few notes on the generated table schema:
The schema
object contains a pandas_version
field. This contains the version of pandasâ dialect of the schema, and will be incremented with each revision.
All dates are converted to UTC when serializing. Even timezone naive values, which are treated as UTC with an offset of 0.
In [307]: from pandas.io.json import build_table_schema In [308]: s = pd.Series(pd.date_range("2016", periods=4)) In [309]: build_table_schema(s) Out[309]: {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'datetime'}], 'primaryKey': ['index'], 'pandas_version': '1.4.0'}
datetimes with a timezone (before serializing), include an additional field tz
with the time zone name (e.g. 'US/Central'
).
In [310]: s_tz = pd.Series(pd.date_range("2016", periods=12, tz="US/Central")) In [311]: build_table_schema(s_tz) Out[311]: {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'datetime', 'tz': 'US/Central'}], 'primaryKey': ['index'], 'pandas_version': '1.4.0'}
Periods are converted to timestamps before serialization, and so have the same behavior of being converted to UTC. In addition, periods will contain and additional field freq
with the periodâs frequency, e.g. 'A-DEC'
.
In [312]: s_per = pd.Series(1, index=pd.period_range("2016", freq="Y-DEC", periods=4)) In [313]: build_table_schema(s_per) Out[313]: {'fields': [{'name': 'index', 'type': 'datetime', 'freq': 'YE-DEC'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index'], 'pandas_version': '1.4.0'}
Categoricals use the any
type and an enum
constraint listing the set of possible values. Additionally, an ordered
field is included:
In [314]: s_cat = pd.Series(pd.Categorical(["a", "b", "a"])) In [315]: build_table_schema(s_cat) Out[315]: {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'any', 'constraints': {'enum': ['a', 'b']}, 'ordered': False}], 'primaryKey': ['index'], 'pandas_version': '1.4.0'}
A primaryKey
field, containing an array of labels, is included if the index is unique:
In [316]: s_dupe = pd.Series([1, 2], index=[1, 1]) In [317]: build_table_schema(s_dupe) Out[317]: {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'pandas_version': '1.4.0'}
The primaryKey
behavior is the same with MultiIndexes, but in this case the primaryKey
is an array:
In [318]: s_multi = pd.Series(1, index=pd.MultiIndex.from_product([("a", "b"), (0, 1)])) In [319]: build_table_schema(s_multi) Out[319]: {'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': FrozenList(['level_0', 'level_1']), 'pandas_version': '1.4.0'}
The default naming roughly follows these rules:
For series, the
object.name
is used. If thatâs none, then the name isvalues
For
DataFrames
, the stringified version of the column name is usedFor
Index
(notMultiIndex
),index.name
is used, with a fallback toindex
if that is None.For
MultiIndex
,mi.names
is used. If any level has no name, thenlevel_<i>
is used.
read_json
also accepts orient='table'
as an argument. This allows for the preservation of metadata such as dtypes and index names in a round-trippable manner.
In [320]: df = pd.DataFrame( .....: { .....: "foo": [1, 2, 3, 4], .....: "bar": ["a", "b", "c", "d"], .....: "baz": pd.date_range("2018-01-01", freq="d", periods=4), .....: "qux": pd.Categorical(["a", "b", "c", "c"]), .....: }, .....: index=pd.Index(range(4), name="idx"), .....: ) .....: In [321]: df Out[321]: foo bar baz qux idx 0 1 a 2018-01-01 a 1 2 b 2018-01-02 b 2 3 c 2018-01-03 c 3 4 d 2018-01-04 c In [322]: df.dtypes Out[322]: foo int64 bar object baz datetime64[ns] qux category dtype: object In [323]: df.to_json("test.json", orient="table") In [324]: new_df = pd.read_json("test.json", orient="table") In [325]: new_df Out[325]: foo bar baz qux idx 0 1 a 2018-01-01 a 1 2 b 2018-01-02 b 2 3 c 2018-01-03 c 3 4 d 2018-01-04 c In [326]: new_df.dtypes Out[326]: foo int64 bar object baz datetime64[ns] qux category dtype: object
Please note that the literal string âindexâ as the name of an Index
is not round-trippable, nor are any names beginning with 'level_'
within a MultiIndex
. These are used by default in DataFrame.to_json()
to indicate missing values and the subsequent read cannot distinguish the intent.
In [327]: df.index.name = "index" In [328]: df.to_json("test.json", orient="table") In [329]: new_df = pd.read_json("test.json", orient="table") In [330]: print(new_df.index.name) None
When using orient='table'
along with user-defined ExtensionArray
, the generated schema will contain an additional extDtype
key in the respective fields
element. This extra key is not standard but does enable JSON roundtrips for extension types (e.g. read_json(df.to_json(orient="table"), orient="table")
).
The extDtype
key carries the name of the extension, if you have properly registered the ExtensionDtype
, pandas will use said name to perform a lookup into the registry and re-convert the serialized data into your custom dtype.
Warning
We highly encourage you to read the HTML Table Parsing gotchas below regarding the issues surrounding the BeautifulSoup4/html5lib/lxml parsers.
The top-level read_html()
function can accept an HTML string/file/URL and will parse HTML tables into list of pandas DataFrames
. Letâs look at a few examples.
Note
read_html
returns a list
of DataFrame
objects, even if there is only a single table contained in the HTML content.
Read a URL with no options:
In [320]: url = "https://www.fdic.gov/resources/resolutions/bank-failures/failed-bank-list" In [321]: pd.read_html(url) Out[321]: [ Bank NameBank CityCity StateSt ... Acquiring InstitutionAI Closing DateClosing FundFund 0 Almena State Bank Almena KS ... Equity Bank October 23, 2020 10538 1 First City Bank of Florida Fort Walton Beach FL ... United Fidelity Bank, fsb October 16, 2020 10537 2 The First State Bank Barboursville WV ... MVB Bank, Inc. April 3, 2020 10536 3 Ericson State Bank Ericson NE ... Farmers and Merchants Bank February 14, 2020 10535 4 City National Bank of New Jersey Newark NJ ... Industrial Bank November 1, 2019 10534 .. ... ... ... ... ... ... ... 558 Superior Bank, FSB Hinsdale IL ... Superior Federal, FSB July 27, 2001 6004 559 Malta National Bank Malta OH ... North Valley Bank May 3, 2001 4648 560 First Alliance Bank & Trust Co. Manchester NH ... Southern New Hampshire Bank & Trust February 2, 2001 4647 561 National State Bank of Metropolis Metropolis IL ... Banterra Bank of Marion December 14, 2000 4646 562 Bank of Honolulu Honolulu HI ... Bank of the Orient October 13, 2000 4645 [563 rows x 7 columns]]
Note
The data from the above URL changes every Monday so the resulting data above may be slightly different.
Read a URL while passing headers alongside the HTTP request:
In [322]: url = 'https://www.sump.org/notes/request/' # HTTP request reflector In [323]: pd.read_html(url) Out[323]: [ 0 1 0 Remote Socket: 51.15.105.256:51760 1 Protocol Version: HTTP/1.1 2 Request Method: GET 3 Request URI: /notes/request/ 4 Request Query: NaN, 0 Accept-Encoding: identity 1 Host: www.sump.org 2 User-Agent: Python-urllib/3.8 3 Connection: close] In [324]: headers = { In [325]: 'User-Agent':'Mozilla Firefox v14.0', In [326]: 'Accept':'application/json', In [327]: 'Connection':'keep-alive', In [328]: 'Auth':'Bearer 2*/f3+fe68df*4' In [329]: } In [340]: pd.read_html(url, storage_options=headers) Out[340]: [ 0 1 0 Remote Socket: 51.15.105.256:51760 1 Protocol Version: HTTP/1.1 2 Request Method: GET 3 Request URI: /notes/request/ 4 Request Query: NaN, 0 User-Agent: Mozilla Firefox v14.0 1 AcceptEncoding: gzip, deflate, br 2 Accept: application/json 3 Connection: keep-alive 4 Auth: Bearer 2*/f3+fe68df*4]
Note
We see above that the headers we passed are reflected in the HTTP request.
Read in the content of the file from the above URL and pass it to read_html
as a string:
In [331]: html_str = """ .....: <table> .....: <tr> .....: <th>A</th> .....: <th colspan="1">B</th> .....: <th rowspan="1">C</th> .....: </tr> .....: <tr> .....: <td>a</td> .....: <td>b</td> .....: <td>c</td> .....: </tr> .....: </table> .....: """ .....: In [332]: with open("tmp.html", "w") as f: .....: f.write(html_str) .....: In [333]: df = pd.read_html("tmp.html") In [334]: df[0] Out[334]: A B C 0 a b c
You can even pass in an instance of StringIO
if you so desire:
In [335]: dfs = pd.read_html(StringIO(html_str)) In [336]: dfs[0] Out[336]: A B C 0 a b c
Note
The following examples are not run by the IPython evaluator due to the fact that having so many network-accessing functions slows down the documentation build. If you spot an error or an example that doesnât run, please do not hesitate to report it over on pandas GitHub issues page.
Read a URL and match a table that contains specific text:
match = "Metcalf Bank" df_list = pd.read_html(url, match=match)
Specify a header row (by default <th>
or <td>
elements located within a <thead>
are used to form the column index, if multiple rows are contained within <thead>
then a MultiIndex is created); if specified, the header row is taken from the data minus the parsed header elements (<th>
elements).
dfs = pd.read_html(url, header=0)
Specify an index column:
dfs = pd.read_html(url, index_col=0)
Specify a number of rows to skip:
dfs = pd.read_html(url, skiprows=0)
Specify a number of rows to skip using a list (range
works as well):
dfs = pd.read_html(url, skiprows=range(2))
Specify an HTML attribute:
dfs1 = pd.read_html(url, attrs={"id": "table"}) dfs2 = pd.read_html(url, attrs={"class": "sortable"}) print(np.array_equal(dfs1[0], dfs2[0])) # Should be True
Specify values that should be converted to NaN:
dfs = pd.read_html(url, na_values=["No Acquirer"])
Specify whether to keep the default set of NaN values:
dfs = pd.read_html(url, keep_default_na=False)
Specify converters for columns. This is useful for numerical text data that has leading zeros. By default columns that are numerical are cast to numeric types and the leading zeros are lost. To avoid this, we can convert these columns to strings.
url_mcc = "https://en.wikipedia.org/wiki/Mobile_country_code?oldid=899173761" dfs = pd.read_html( url_mcc, match="Telekom Albania", header=0, converters={"MNC": str}, )
Use some combination of the above:
dfs = pd.read_html(url, match="Metcalf Bank", index_col=0)
Read in pandas to_html
output (with some loss of floating point precision):
df = pd.DataFrame(np.random.randn(2, 2)) s = df.to_html(float_format="{0:.40g}".format) dfin = pd.read_html(s, index_col=0)
The lxml
backend will raise an error on a failed parse if that is the only parser you provide. If you only have a single parser you can provide just a string, but it is considered good practice to pass a list with one string if, for example, the function expects a sequence of strings. You may use:
dfs = pd.read_html(url, "Metcalf Bank", index_col=0, flavor=["lxml"])
Or you could pass flavor='lxml'
without a list:
dfs = pd.read_html(url, "Metcalf Bank", index_col=0, flavor="lxml")
However, if you have bs4 and html5lib installed and pass None
or ['lxml', 'bs4']
then the parse will most likely succeed. Note that as soon as a parse succeeds, the function will return.
dfs = pd.read_html(url, "Metcalf Bank", index_col=0, flavor=["lxml", "bs4"])
Links can be extracted from cells along with the text using extract_links="all"
.
In [337]: html_table = """ .....: <table> .....: <tr> .....: <th>GitHub</th> .....: </tr> .....: <tr> .....: <td><a href="https://github.com/pandas-dev/pandas">pandas</a></td> .....: </tr> .....: </table> .....: """ .....: In [338]: df = pd.read_html( .....: StringIO(html_table), .....: extract_links="all" .....: )[0] .....: In [339]: df Out[339]: (GitHub, None) 0 (pandas, https://github.com/pandas-dev/pandas) In [340]: df[("GitHub", None)] Out[340]: 0 (pandas, https://github.com/pandas-dev/pandas) Name: (GitHub, None), dtype: object In [341]: df[("GitHub", None)].str[1] Out[341]: 0 https://github.com/pandas-dev/pandas Name: (GitHub, None), dtype: object
Added in version 1.5.0.
Writing to HTML files#DataFrame
objects have an instance method to_html
which renders the contents of the DataFrame
as an HTML table. The function arguments are as in the method to_string
described above.
Note
Not all of the possible options for DataFrame.to_html
are shown here for brevityâs sake. See DataFrame.to_html()
for the full set of options.
Note
In an HTML-rendering supported environment like a Jupyter Notebook, display(HTML(...))`
will render the raw HTML into the environment.
In [342]: from IPython.display import display, HTML In [343]: df = pd.DataFrame(np.random.randn(2, 2)) In [344]: df Out[344]: 0 1 0 -0.345352 1.314232 1 0.690579 0.995761 In [345]: html = df.to_html() In [346]: print(html) # raw html <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.345352</td> <td>1.314232</td> </tr> <tr> <th>1</th> <td>0.690579</td> <td>0.995761</td> </tr> </tbody> </table> In [347]: display(HTML(html)) <IPython.core.display.HTML object>
The columns
argument will limit the columns shown:
In [348]: html = df.to_html(columns=[0]) In [349]: print(html) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.345352</td> </tr> <tr> <th>1</th> <td>0.690579</td> </tr> </tbody> </table> In [350]: display(HTML(html)) <IPython.core.display.HTML object>
float_format
takes a Python callable to control the precision of floating point values:
In [351]: html = df.to_html(float_format="{0:.10f}".format) In [352]: print(html) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.3453521949</td> <td>1.3142323796</td> </tr> <tr> <th>1</th> <td>0.6905793352</td> <td>0.9957609037</td> </tr> </tbody> </table> In [353]: display(HTML(html)) <IPython.core.display.HTML object>
bold_rows
will make the row labels bold by default, but you can turn that off:
In [354]: html = df.to_html(bold_rows=False) In [355]: print(html) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>-0.345352</td> <td>1.314232</td> </tr> <tr> <td>1</td> <td>0.690579</td> <td>0.995761</td> </tr> </tbody> </table> In [356]: display(HTML(html)) <IPython.core.display.HTML object>
The classes
argument provides the ability to give the resulting HTML table CSS classes. Note that these classes are appended to the existing 'dataframe'
class.
In [357]: print(df.to_html(classes=["awesome_table_class", "even_more_awesome_class"])) <table border="1" class="dataframe awesome_table_class even_more_awesome_class"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.345352</td> <td>1.314232</td> </tr> <tr> <th>1</th> <td>0.690579</td> <td>0.995761</td> </tr> </tbody> </table>
The render_links
argument provides the ability to add hyperlinks to cells that contain URLs.
In [358]: url_df = pd.DataFrame( .....: { .....: "name": ["Python", "pandas"], .....: "url": ["https://www.python.org/", "https://pandas.pydata.org"], .....: } .....: ) .....: In [359]: html = url_df.to_html(render_links=True) In [360]: print(html) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>name</th> <th>url</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>Python</td> <td><a href="https://www.python.org/" target="_blank">https://www.python.org/</a></td> </tr> <tr> <th>1</th> <td>pandas</td> <td><a href="https://pandas.pydata.org" target="_blank">https://pandas.pydata.org</a></td> </tr> </tbody> </table> In [361]: display(HTML(html)) <IPython.core.display.HTML object>
Finally, the escape
argument allows you to control whether the â<â, â>â and â&â characters escaped in the resulting HTML (by default it is True
). So to get the HTML without escaped characters pass escape=False
In [362]: df = pd.DataFrame({"a": list("&<>"), "b": np.random.randn(3)})
Escaped:
In [363]: html = df.to_html() In [364]: print(html) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>a</th> <th>b</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>&</td> <td>2.396780</td> </tr> <tr> <th>1</th> <td><</td> <td>0.014871</td> </tr> <tr> <th>2</th> <td>></td> <td>3.357427</td> </tr> </tbody> </table> In [365]: display(HTML(html)) <IPython.core.display.HTML object>
Not escaped:
In [366]: html = df.to_html(escape=False) In [367]: print(html) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>a</th> <th>b</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>&</td> <td>2.396780</td> </tr> <tr> <th>1</th> <td><</td> <td>0.014871</td> </tr> <tr> <th>2</th> <td>></td> <td>3.357427</td> </tr> </tbody> </table> In [368]: display(HTML(html)) <IPython.core.display.HTML object>
Note
Some browsers may not show a difference in the rendering of the previous two HTML tables.
HTML Table Parsing Gotchas#There are some versioning issues surrounding the libraries that are used to parse HTML tables in the top-level pandas io function read_html
.
Issues with lxml
Benefits
Drawbacks
lxml does not make any guarantees about the results of its parse unless it is given strictly valid markup.
In light of the above, we have chosen to allow you, the user, to use the lxml backend, but this backend will use html5lib if lxml fails to parse
It is therefore highly recommended that you install both BeautifulSoup4 and html5lib, so that you will still get a valid result (provided everything else is valid) even if lxml fails.
Issues with BeautifulSoup4 using lxml as a backend
The above issues hold here as well since BeautifulSoup4 is essentially just a wrapper around a parser backend.
Issues with BeautifulSoup4 using html5lib as a backend
Benefits
html5lib is far more lenient than lxml and consequently deals with real-life markup in a much saner way rather than just, e.g., dropping an element without notifying you.
html5lib generates valid HTML5 markup from invalid markup automatically. This is extremely important for parsing HTML tables, since it guarantees a valid document. However, that does NOT mean that it is âcorrectâ, since the process of fixing markup does not have a single definition.
html5lib is pure Python and requires no additional build steps beyond its own installation.
Drawbacks
The biggest drawback to using html5lib is that it is slow as molasses. However consider the fact that many tables on the web are not big enough for the parsing algorithm runtime to matter. It is more likely that the bottleneck will be in the process of reading the raw text from the URL over the web, i.e., IO (input-output). For very large tables, this might not be true.
Added in version 1.3.0.
Currently there are no methods to read from LaTeX, only output methods.
Writing to LaTeX files#Note
DataFrame and Styler objects currently have a to_latex
method. We recommend using the Styler.to_latex() method over DataFrame.to_latex() due to the formerâs greater flexibility with conditional styling, and the latterâs possible future deprecation.
Review the documentation for Styler.to_latex, which gives examples of conditional styling and explains the operation of its keyword arguments.
For simple application the following pattern is sufficient.
In [369]: df = pd.DataFrame([[1, 2], [3, 4]], index=["a", "b"], columns=["c", "d"]) In [370]: print(df.style.to_latex()) \begin{tabular}{lrr} & c & d \\ a & 1 & 2 \\ b & 3 & 4 \\ \end{tabular}
To format values before output, chain the Styler.format method.
In [371]: print(df.style.format("⬠{}").to_latex()) \begin{tabular}{lrr} & c & d \\ a & ⬠1 & ⬠2 \\ b & ⬠3 & ⬠4 \\ \end{tabular}XML# Reading XML#
Added in version 1.3.0.
The top-level read_xml()
function can accept an XML string/file/URL and will parse nodes and attributes into a pandas DataFrame
.
Note
Since there is no standard XML structure where design types can vary in many ways, read_xml
works best with flatter, shallow versions. If an XML document is deeply nested, use the stylesheet
feature to transform XML into a flatter version.
Letâs look at a few examples.
Read an XML string:
In [372]: from io import StringIO In [373]: xml = """<?xml version="1.0" encoding="UTF-8"?> .....: <bookstore> .....: <book category="cooking"> .....: <title lang="en">Everyday Italian</title> .....: <author>Giada De Laurentiis</author> .....: <year>2005</year> .....: <price>30.00</price> .....: </book> .....: <book category="children"> .....: <title lang="en">Harry Potter</title> .....: <author>J K. Rowling</author> .....: <year>2005</year> .....: <price>29.99</price> .....: </book> .....: <book category="web"> .....: <title lang="en">Learning XML</title> .....: <author>Erik T. Ray</author> .....: <year>2003</year> .....: <price>39.95</price> .....: </book> .....: </bookstore>""" .....: In [374]: df = pd.read_xml(StringIO(xml)) In [375]: df Out[375]: category title author year price 0 cooking Everyday Italian Giada De Laurentiis 2005 30.00 1 children Harry Potter J K. Rowling 2005 29.99 2 web Learning XML Erik T. Ray 2003 39.95
Read a URL with no options:
In [376]: df = pd.read_xml("https://www.w3schools.com/xml/books.xml") In [377]: df Out[377]: category title author year price cover 0 cooking Everyday Italian Giada De Laurentiis 2005 30.00 None 1 children Harry Potter J K. Rowling 2005 29.99 None 2 web XQuery Kick Start Vaidyanathan Nagarajan 2003 49.99 None 3 web Learning XML Erik T. Ray 2003 39.95 paperback
Read in the content of the âbooks.xmlâ file and pass it to read_xml
as a string:
In [378]: file_path = "books.xml" In [379]: with open(file_path, "w") as f: .....: f.write(xml) .....: In [380]: with open(file_path, "r") as f: .....: df = pd.read_xml(StringIO(f.read())) .....: In [381]: df Out[381]: category title author year price 0 cooking Everyday Italian Giada De Laurentiis 2005 30.00 1 children Harry Potter J K. Rowling 2005 29.99 2 web Learning XML Erik T. Ray 2003 39.95
Read in the content of the âbooks.xmlâ as instance of StringIO
or BytesIO
and pass it to read_xml
:
In [382]: with open(file_path, "r") as f: .....: sio = StringIO(f.read()) .....: In [383]: df = pd.read_xml(sio) In [384]: df Out[384]: category title author year price 0 cooking Everyday Italian Giada De Laurentiis 2005 30.00 1 children Harry Potter J K. Rowling 2005 29.99 2 web Learning XML Erik T. Ray 2003 39.95
In [385]: with open(file_path, "rb") as f: .....: bio = BytesIO(f.read()) .....: In [386]: df = pd.read_xml(bio) In [387]: df Out[387]: category title author year price 0 cooking Everyday Italian Giada De Laurentiis 2005 30.00 1 children Harry Potter J K. Rowling 2005 29.99 2 web Learning XML Erik T. Ray 2003 39.95
Even read XML from AWS S3 buckets such as NIH NCBI PMC Article Datasets providing Biomedical and Life Science Jorurnals:
In [388]: df = pd.read_xml( .....: "s3://pmc-oa-opendata/oa_comm/xml/all/PMC1236943.xml", .....: xpath=".//journal-meta", .....: ) .....: In [389]: df Out[389]: journal-id journal-title issn publisher 0 Cardiovasc Ultrasound Cardiovascular Ultrasound 1476-7120 NaN
With lxml as default parser
, you access the full-featured XML library that extends Pythonâs ElementTree API. One powerful tool is ability to query nodes selectively or conditionally with more expressive XPath:
In [390]: df = pd.read_xml(file_path, xpath="//book[year=2005]") In [391]: df Out[391]: category title author year price 0 cooking Everyday Italian Giada De Laurentiis 2005 30.00 1 children Harry Potter J K. Rowling 2005 29.99
Specify only elements or only attributes to parse:
In [392]: df = pd.read_xml(file_path, elems_only=True) In [393]: df Out[393]: title author year price 0 Everyday Italian Giada De Laurentiis 2005 30.00 1 Harry Potter J K. Rowling 2005 29.99 2 Learning XML Erik T. Ray 2003 39.95
In [394]: df = pd.read_xml(file_path, attrs_only=True) In [395]: df Out[395]: category 0 cooking 1 children 2 web
XML documents can have namespaces with prefixes and default namespaces without prefixes both of which are denoted with a special attribute xmlns
. In order to parse by node under a namespace context, xpath
must reference a prefix.
For example, below XML contains a namespace with prefix, doc
, and URI at https://example.com
. In order to parse doc:row
nodes, namespaces
must be used.
In [396]: xml = """<?xml version='1.0' encoding='utf-8'?> .....: <doc:data xmlns:doc="https://example.com"> .....: <doc:row> .....: <doc:shape>square</doc:shape> .....: <doc:degrees>360</doc:degrees> .....: <doc:sides>4.0</doc:sides> .....: </doc:row> .....: <doc:row> .....: <doc:shape>circle</doc:shape> .....: <doc:degrees>360</doc:degrees> .....: <doc:sides/> .....: </doc:row> .....: <doc:row> .....: <doc:shape>triangle</doc:shape> .....: <doc:degrees>180</doc:degrees> .....: <doc:sides>3.0</doc:sides> .....: </doc:row> .....: </doc:data>""" .....: In [397]: df = pd.read_xml(StringIO(xml), .....: xpath="//doc:row", .....: namespaces={"doc": "https://example.com"}) .....: In [398]: df Out[398]: shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0
Similarly, an XML document can have a default namespace without prefix. Failing to assign a temporary prefix will return no nodes and raise a ValueError
. But assigning any temporary name to correct URI allows parsing by nodes.
In [399]: xml = """<?xml version='1.0' encoding='utf-8'?> .....: <data xmlns="https://example.com"> .....: <row> .....: <shape>square</shape> .....: <degrees>360</degrees> .....: <sides>4.0</sides> .....: </row> .....: <row> .....: <shape>circle</shape> .....: <degrees>360</degrees> .....: <sides/> .....: </row> .....: <row> .....: <shape>triangle</shape> .....: <degrees>180</degrees> .....: <sides>3.0</sides> .....: </row> .....: </data>""" .....: In [400]: df = pd.read_xml(StringIO(xml), .....: xpath="//pandas:row", .....: namespaces={"pandas": "https://example.com"}) .....: In [401]: df Out[401]: shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0
However, if XPath does not reference node names such as default, /*
, then namespaces
is not required.
Note
Since xpath
identifies the parent of content to be parsed, only immediate desendants which include child nodes or current attributes are parsed. Therefore, read_xml
will not parse the text of grandchildren or other descendants and will not parse attributes of any descendant. To retrieve lower level content, adjust xpath to lower level. For example,
In [402]: xml = """ .....: <data> .....: <row> .....: <shape sides="4">square</shape> .....: <degrees>360</degrees> .....: </row> .....: <row> .....: <shape sides="0">circle</shape> .....: <degrees>360</degrees> .....: </row> .....: <row> .....: <shape sides="3">triangle</shape> .....: <degrees>180</degrees> .....: </row> .....: </data>""" .....: In [403]: df = pd.read_xml(StringIO(xml), xpath="./row") In [404]: df Out[404]: shape degrees 0 square 360 1 circle 360 2 triangle 180
shows the attribute sides
on shape
element was not parsed as expected since this attribute resides on the child of row
element and not row
element itself. In other words, sides
attribute is a grandchild level descendant of row
element. However, the xpath
targets row
element which covers only its children and attributes.
With lxml as parser, you can flatten nested XML documents with an XSLT script which also can be string/file/URL types. As background, XSLT is a special-purpose language written in a special XML file that can transform original XML documents into other XML, HTML, even text (CSV, JSON, etc.) using an XSLT processor.
For example, consider this somewhat nested structure of Chicago âLâ Rides where station and rides elements encapsulate data in their own sections. With below XSLT, lxml
can transform original nested document into a flatter output (as shown below for demonstration) for easier parse into DataFrame
:
In [405]: xml = """<?xml version='1.0' encoding='utf-8'?> .....: <response> .....: <row> .....: <station id="40850" name="Library"/> .....: <month>2020-09-01T00:00:00</month> .....: <rides> .....: <avg_weekday_rides>864.2</avg_weekday_rides> .....: <avg_saturday_rides>534</avg_saturday_rides> .....: <avg_sunday_holiday_rides>417.2</avg_sunday_holiday_rides> .....: </rides> .....: </row> .....: <row> .....: <station id="41700" name="Washington/Wabash"/> .....: <month>2020-09-01T00:00:00</month> .....: <rides> .....: <avg_weekday_rides>2707.4</avg_weekday_rides> .....: <avg_saturday_rides>1909.8</avg_saturday_rides> .....: <avg_sunday_holiday_rides>1438.6</avg_sunday_holiday_rides> .....: </rides> .....: </row> .....: <row> .....: <station id="40380" name="Clark/Lake"/> .....: <month>2020-09-01T00:00:00</month> .....: <rides> .....: <avg_weekday_rides>2949.6</avg_weekday_rides> .....: <avg_saturday_rides>1657</avg_saturday_rides> .....: <avg_sunday_holiday_rides>1453.8</avg_sunday_holiday_rides> .....: </rides> .....: </row> .....: </response>""" .....: In [406]: xsl = """<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> .....: <xsl:output method="xml" omit-xml-declaration="no" indent="yes"/> .....: <xsl:strip-space elements="*"/> .....: <xsl:template match="/response"> .....: <xsl:copy> .....: <xsl:apply-templates select="row"/> .....: </xsl:copy> .....: </xsl:template> .....: <xsl:template match="row"> .....: <xsl:copy> .....: <station_id><xsl:value-of select="station/@id"/></station_id> .....: <station_name><xsl:value-of select="station/@name"/></station_name> .....: <xsl:copy-of select="month|rides/*"/> .....: </xsl:copy> .....: </xsl:template> .....: </xsl:stylesheet>""" .....: In [407]: output = """<?xml version='1.0' encoding='utf-8'?> .....: <response> .....: <row> .....: <station_id>40850</station_id> .....: <station_name>Library</station_name> .....: <month>2020-09-01T00:00:00</month> .....: <avg_weekday_rides>864.2</avg_weekday_rides> .....: <avg_saturday_rides>534</avg_saturday_rides> .....: <avg_sunday_holiday_rides>417.2</avg_sunday_holiday_rides> .....: </row> .....: <row> .....: <station_id>41700</station_id> .....: <station_name>Washington/Wabash</station_name> .....: <month>2020-09-01T00:00:00</month> .....: <avg_weekday_rides>2707.4</avg_weekday_rides> .....: <avg_saturday_rides>1909.8</avg_saturday_rides> .....: <avg_sunday_holiday_rides>1438.6</avg_sunday_holiday_rides> .....: </row> .....: <row> .....: <station_id>40380</station_id> .....: <station_name>Clark/Lake</station_name> .....: <month>2020-09-01T00:00:00</month> .....: <avg_weekday_rides>2949.6</avg_weekday_rides> .....: <avg_saturday_rides>1657</avg_saturday_rides> .....: <avg_sunday_holiday_rides>1453.8</avg_sunday_holiday_rides> .....: </row> .....: </response>""" .....: In [408]: df = pd.read_xml(StringIO(xml), stylesheet=xsl) In [409]: df Out[409]: station_id station_name ... avg_saturday_rides avg_sunday_holiday_rides 0 40850 Library ... 534.0 417.2 1 41700 Washington/Wabash ... 1909.8 1438.6 2 40380 Clark/Lake ... 1657.0 1453.8 [3 rows x 6 columns]
For very large XML files that can range in hundreds of megabytes to gigabytes, pandas.read_xml()
supports parsing such sizeable files using lxmlâs iterparse and etreeâs iterparse which are memory-efficient methods to iterate through an XML tree and extract specific elements and attributes. without holding entire tree in memory.
Added in version 1.5.0.
To use this feature, you must pass a physical XML file path into read_xml
and use the iterparse
argument. Files should not be compressed or point to online sources but stored on local disk. Also, iterparse
should be a dictionary where the key is the repeating nodes in document (which become the rows) and the value is a list of any element or attribute that is a descendant (i.e., child, grandchild) of repeating node. Since XPath is not used in this method, descendants do not need to share same relationship with one another. Below shows example of reading in Wikipediaâs very large (12 GB+) latest article data dump.
In [1]: df = pd.read_xml( ... "/path/to/downloaded/enwikisource-latest-pages-articles.xml", ... iterparse = {"page": ["title", "ns", "id"]} ... ) ... df Out[2]: title ns id 0 Gettysburg Address 0 21450 1 Main Page 0 42950 2 Declaration by United Nations 0 8435 3 Constitution of the United States of America 0 8435 4 Declaration of Independence (Israel) 0 17858 ... ... ... ... 3578760 Page:Black cat 1897 07 v2 n10.pdf/17 104 219649 3578761 Page:Black cat 1897 07 v2 n10.pdf/43 104 219649 3578762 Page:Black cat 1897 07 v2 n10.pdf/44 104 219649 3578763 The History of Tom Jones, a Foundling/Book IX 0 12084291 3578764 Page:Shakespeare of Stratford (1926) Yale.djvu/91 104 21450 [3578765 rows x 3 columns]Writing XML#
Added in version 1.3.0.
DataFrame
objects have an instance method to_xml
which renders the contents of the DataFrame
as an XML document.
Note
This method does not support special properties of XML including DTD, CData, XSD schemas, processing instructions, comments, and others. Only namespaces at the root level is supported. However, stylesheet
allows design changes after initial output.
Letâs look at a few examples.
Write an XML without options:
In [410]: geom_df = pd.DataFrame( .....: { .....: "shape": ["square", "circle", "triangle"], .....: "degrees": [360, 360, 180], .....: "sides": [4, np.nan, 3], .....: } .....: ) .....: In [411]: print(geom_df.to_xml()) <?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides/> </row> <row> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data>
Write an XML with new root and row name:
In [412]: print(geom_df.to_xml(root_name="geometry", row_name="objects")) <?xml version='1.0' encoding='utf-8'?> <geometry> <objects> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </objects> <objects> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides/> </objects> <objects> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </objects> </geometry>
Write an attribute-centric XML:
In [413]: print(geom_df.to_xml(attr_cols=geom_df.columns.tolist())) <?xml version='1.0' encoding='utf-8'?> <data> <row index="0" shape="square" degrees="360" sides="4.0"/> <row index="1" shape="circle" degrees="360"/> <row index="2" shape="triangle" degrees="180" sides="3.0"/> </data>
Write a mix of elements and attributes:
In [414]: print( .....: geom_df.to_xml( .....: index=False, .....: attr_cols=['shape'], .....: elem_cols=['degrees', 'sides']) .....: ) .....: <?xml version='1.0' encoding='utf-8'?> <data> <row shape="square"> <degrees>360</degrees> <sides>4.0</sides> </row> <row shape="circle"> <degrees>360</degrees> <sides/> </row> <row shape="triangle"> <degrees>180</degrees> <sides>3.0</sides> </row> </data>
Any DataFrames
with hierarchical columns will be flattened for XML element names with levels delimited by underscores:
In [415]: ext_geom_df = pd.DataFrame( .....: { .....: "type": ["polygon", "other", "polygon"], .....: "shape": ["square", "circle", "triangle"], .....: "degrees": [360, 360, 180], .....: "sides": [4, np.nan, 3], .....: } .....: ) .....: In [416]: pvt_df = ext_geom_df.pivot_table(index='shape', .....: columns='type', .....: values=['degrees', 'sides'], .....: aggfunc='sum') .....: In [417]: pvt_df Out[417]: degrees sides type other polygon other polygon shape circle 360.0 NaN 0.0 NaN square NaN 360.0 NaN 4.0 triangle NaN 180.0 NaN 3.0 In [418]: print(pvt_df.to_xml()) <?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>circle</shape> <degrees_other>360.0</degrees_other> <degrees_polygon/> <sides_other>0.0</sides_other> <sides_polygon/> </row> <row> <shape>square</shape> <degrees_other/> <degrees_polygon>360.0</degrees_polygon> <sides_other/> <sides_polygon>4.0</sides_polygon> </row> <row> <shape>triangle</shape> <degrees_other/> <degrees_polygon>180.0</degrees_polygon> <sides_other/> <sides_polygon>3.0</sides_polygon> </row> </data>
Write an XML with default namespace:
In [419]: print(geom_df.to_xml(namespaces={"": "https://example.com"})) <?xml version='1.0' encoding='utf-8'?> <data xmlns="https://example.com"> <row> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides/> </row> <row> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data>
Write an XML with namespace prefix:
In [420]: print( .....: geom_df.to_xml(namespaces={"doc": "https://example.com"}, .....: prefix="doc") .....: ) .....: <?xml version='1.0' encoding='utf-8'?> <doc:data xmlns:doc="https://example.com"> <doc:row> <doc:index>0</doc:index> <doc:shape>square</doc:shape> <doc:degrees>360</doc:degrees> <doc:sides>4.0</doc:sides> </doc:row> <doc:row> <doc:index>1</doc:index> <doc:shape>circle</doc:shape> <doc:degrees>360</doc:degrees> <doc:sides/> </doc:row> <doc:row> <doc:index>2</doc:index> <doc:shape>triangle</doc:shape> <doc:degrees>180</doc:degrees> <doc:sides>3.0</doc:sides> </doc:row> </doc:data>
Write an XML without declaration or pretty print:
In [421]: print( .....: geom_df.to_xml(xml_declaration=False, .....: pretty_print=False) .....: ) .....: <data><row><index>0</index><shape>square</shape><degrees>360</degrees><sides>4.0</sides></row><row><index>1</index><shape>circle</shape><degrees>360</degrees><sides/></row><row><index>2</index><shape>triangle</shape><degrees>180</degrees><sides>3.0</sides></row></data>
Write an XML and transform with stylesheet:
In [422]: xsl = """<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> .....: <xsl:output method="xml" omit-xml-declaration="no" indent="yes"/> .....: <xsl:strip-space elements="*"/> .....: <xsl:template match="/data"> .....: <geometry> .....: <xsl:apply-templates select="row"/> .....: </geometry> .....: </xsl:template> .....: <xsl:template match="row"> .....: <object index="{index}"> .....: <xsl:if test="shape!='circle'"> .....: <xsl:attribute name="type">polygon</xsl:attribute> .....: </xsl:if> .....: <xsl:copy-of select="shape"/> .....: <property> .....: <xsl:copy-of select="degrees|sides"/> .....: </property> .....: </object> .....: </xsl:template> .....: </xsl:stylesheet>""" .....: In [423]: print(geom_df.to_xml(stylesheet=xsl)) <?xml version="1.0"?> <geometry> <object index="0" type="polygon"> <shape>square</shape> <property> <degrees>360</degrees> <sides>4.0</sides> </property> </object> <object index="1"> <shape>circle</shape> <property> <degrees>360</degrees> <sides/> </property> </object> <object index="2" type="polygon"> <shape>triangle</shape> <property> <degrees>180</degrees> <sides>3.0</sides> </property> </object> </geometry>XML Final Notes#
All XML documents adhere to W3C specifications. Both etree
and lxml
parsers will fail to parse any markup document that is not well-formed or follows XML syntax rules. Do be aware HTML is not an XML document unless it follows XHTML specs. However, other popular markup types including KML, XAML, RSS, MusicML, MathML are compliant XML schemas.
For above reason, if your application builds XML prior to pandas operations, use appropriate DOM libraries like etree
and lxml
to build the necessary document and not by string concatenation or regex adjustments. Always remember XML is a special text file with markup rules.
With very large XML files (several hundred MBs to GBs), XPath and XSLT can become memory-intensive operations. Be sure to have enough available RAM for reading and writing to large XML files (roughly about 5 times the size of text).
Because XSLT is a programming language, use it with caution since such scripts can pose a security risk in your environment and can run large or infinite recursive operations. Always test scripts on small fragments before full run.
The etree parser supports all functionality of both read_xml
and to_xml
except for complex XPath and any XSLT. Though limited in features, etree
is still a reliable and capable parser and tree builder. Its performance may trail lxml
to a certain degree for larger files but relatively unnoticeable on small to medium size files.
The read_excel()
method can read Excel 2007+ (.xlsx
) files using the openpyxl
Python module. Excel 2003 (.xls
) files can be read using xlrd
. Binary Excel (.xlsb
) files can be read using pyxlsb
. All formats can be read using calamine engine. The to_excel()
instance method is used for saving a DataFrame
to Excel. Generally the semantics are similar to working with csv data. See the cookbook for some advanced strategies.
Note
When engine=None
, the following logic will be used to determine the engine:
If path_or_buffer
is an OpenDocument format (.odf, .ods, .odt), then odf will be used.
Otherwise if path_or_buffer
is an xls format, xlrd
will be used.
Otherwise if path_or_buffer
is in xlsb format, pyxlsb
will be used.
Otherwise openpyxl
will be used.
In the most basic use-case, read_excel
takes a path to an Excel file, and the sheet_name
indicating which sheet to parse.
When using the engine_kwargs
parameter, pandas will pass these arguments to the engine. For this, it is important to know which function pandas is using internally.
For the engine openpyxl, pandas is using openpyxl.load_workbook()
to read in (.xlsx
) and (.xlsm
) files.
For the engine xlrd, pandas is using xlrd.open_workbook()
to read in (.xls
) files.
For the engine pyxlsb, pandas is using pyxlsb.open_workbook()
to read in (.xlsb
) files.
For the engine odf, pandas is using odf.opendocument.load()
to read in (.ods
) files.
For the engine calamine, pandas is using python_calamine.load_workbook()
to read in (.xlsx
), (.xlsm
), (.xls
), (.xlsb
), (.ods
) files.
# Returns a DataFrame pd.read_excel("path_to_file.xls", sheet_name="Sheet1")
ExcelFile
class#
To facilitate working with multiple sheets from the same file, the ExcelFile
class can be used to wrap the file and can be passed into read_excel
There will be a performance benefit for reading multiple sheets as the file is read into memory only once.
xlsx = pd.ExcelFile("path_to_file.xls") df = pd.read_excel(xlsx, "Sheet1")
The ExcelFile
class can also be used as a context manager.
with pd.ExcelFile("path_to_file.xls") as xls: df1 = pd.read_excel(xls, "Sheet1") df2 = pd.read_excel(xls, "Sheet2")
The sheet_names
property will generate a list of the sheet names in the file.
The primary use-case for an ExcelFile
is parsing multiple sheets with different parameters:
data = {} # For when Sheet1's format differs from Sheet2 with pd.ExcelFile("path_to_file.xls") as xls: data["Sheet1"] = pd.read_excel(xls, "Sheet1", index_col=None, na_values=["NA"]) data["Sheet2"] = pd.read_excel(xls, "Sheet2", index_col=1)
Note that if the same parsing parameters are used for all sheets, a list of sheet names can simply be passed to read_excel
with no loss in performance.
# using the ExcelFile class data = {} with pd.ExcelFile("path_to_file.xls") as xls: data["Sheet1"] = pd.read_excel(xls, "Sheet1", index_col=None, na_values=["NA"]) data["Sheet2"] = pd.read_excel(xls, "Sheet2", index_col=None, na_values=["NA"]) # equivalent using the read_excel function data = pd.read_excel( "path_to_file.xls", ["Sheet1", "Sheet2"], index_col=None, na_values=["NA"] )
ExcelFile
can also be called with a xlrd.book.Book
object as a parameter. This allows the user to control how the excel file is read. For example, sheets can be loaded on demand by calling xlrd.open_workbook()
with on_demand=True
.
import xlrd xlrd_book = xlrd.open_workbook("path_to_file.xls", on_demand=True) with pd.ExcelFile(xlrd_book) as xls: df1 = pd.read_excel(xls, "Sheet1") df2 = pd.read_excel(xls, "Sheet2")Specifying sheets#
Note
The second argument is sheet_name
, not to be confused with ExcelFile.sheet_names
.
Note
An ExcelFileâs attribute sheet_names
provides access to a list of sheets.
The arguments sheet_name
allows specifying the sheet or sheets to read.
The default value for sheet_name
is 0, indicating to read the first sheet
Pass a string to refer to the name of a particular sheet in the workbook.
Pass an integer to refer to the index of a sheet. Indices follow Python convention, beginning at 0.
Pass a list of either strings or integers, to return a dictionary of specified sheets.
Pass a None
to return a dictionary of all available sheets.
# Returns a DataFrame pd.read_excel("path_to_file.xls", "Sheet1", index_col=None, na_values=["NA"])
Using the sheet index:
# Returns a DataFrame pd.read_excel("path_to_file.xls", 0, index_col=None, na_values=["NA"])
Using all default values:
# Returns a DataFrame pd.read_excel("path_to_file.xls")
Using None to get all sheets:
# Returns a dictionary of DataFrames pd.read_excel("path_to_file.xls", sheet_name=None)
Using a list to get multiple sheets:
# Returns the 1st and 4th sheet, as a dictionary of DataFrames. pd.read_excel("path_to_file.xls", sheet_name=["Sheet1", 3])
read_excel
can read more than one sheet, by setting sheet_name
to either a list of sheet names, a list of sheet positions, or None
to read all sheets. Sheets can be specified by sheet index or sheet name, using an integer or string, respectively.
MultiIndex
#
read_excel
can read a MultiIndex
index, by passing a list of columns to index_col
and a MultiIndex
column by passing a list of rows to header
. If either the index
or columns
have serialized level names those will be read in as well by specifying the rows/columns that make up the levels.
For example, to read in a MultiIndex
index without names:
In [424]: df = pd.DataFrame( .....: {"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]}, .....: index=pd.MultiIndex.from_product([["a", "b"], ["c", "d"]]), .....: ) .....: In [425]: df.to_excel("path_to_file.xlsx") In [426]: df = pd.read_excel("path_to_file.xlsx", index_col=[0, 1]) In [427]: df Out[427]: a b a c 1 5 d 2 6 b c 3 7 d 4 8
If the index has level names, they will parsed as well, using the same parameters.
In [428]: df.index = df.index.set_names(["lvl1", "lvl2"]) In [429]: df.to_excel("path_to_file.xlsx") In [430]: df = pd.read_excel("path_to_file.xlsx", index_col=[0, 1]) In [431]: df Out[431]: a b lvl1 lvl2 a c 1 5 d 2 6 b c 3 7 d 4 8
If the source file has both MultiIndex
index and columns, lists specifying each should be passed to index_col
and header
:
In [432]: df.columns = pd.MultiIndex.from_product([["a"], ["b", "d"]], names=["c1", "c2"]) In [433]: df.to_excel("path_to_file.xlsx") In [434]: df = pd.read_excel("path_to_file.xlsx", index_col=[0, 1], header=[0, 1]) In [435]: df Out[435]: c1 a c2 b d lvl1 lvl2 a c 1 5 d 2 6 b c 3 7 d 4 8
Missing values in columns specified in index_col
will be forward filled to allow roundtripping with to_excel
for merged_cells=True
. To avoid forward filling the missing values use set_index
after reading the data instead of index_col
.
It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read in those columns. read_excel
takes a usecols
keyword to allow you to specify a subset of columns to parse.
You can specify a comma-delimited set of Excel columns and ranges as a string:
pd.read_excel("path_to_file.xls", "Sheet1", usecols="A,C:E")
If usecols
is a list of integers, then it is assumed to be the file column indices to be parsed.
pd.read_excel("path_to_file.xls", "Sheet1", usecols=[0, 2, 3])
Element order is ignored, so usecols=[0, 1]
is the same as [1, 0]
.
If usecols
is a list of strings, it is assumed that each string corresponds to a column name provided either by the user in names
or inferred from the document header row(s). Those strings define which columns will be parsed:
pd.read_excel("path_to_file.xls", "Sheet1", usecols=["foo", "bar"])
Element order is ignored, so usecols=['baz', 'joe']
is the same as ['joe', 'baz']
.
If usecols
is callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True
.
pd.read_excel("path_to_file.xls", "Sheet1", usecols=lambda x: x.isalpha())Parsing dates#
Datetime-like values are normally automatically converted to the appropriate dtype when reading the excel file. But if you have a column of strings that look like dates (but are not actually formatted as dates in excel), you can use the parse_dates
keyword to parse those strings to datetimes:
pd.read_excel("path_to_file.xls", "Sheet1", parse_dates=["date_strings"])Cell converters#
It is possible to transform the contents of Excel cells via the converters
option. For instance, to convert a column to boolean:
pd.read_excel("path_to_file.xls", "Sheet1", converters={"MyBools": bool})
This options handles missing values and treats exceptions in the converters as missing data. Transformations are applied cell by cell rather than to the column as a whole, so the array dtype is not guaranteed. For instance, a column of integers with missing values cannot be transformed to an array with integer dtype, because NaN is strictly a float. You can manually mask missing data to recover integer dtype:
def cfun(x): return int(x) if x else -1 pd.read_excel("path_to_file.xls", "Sheet1", converters={"MyInts": cfun})Dtype specifications#
As an alternative to converters, the type for an entire column can be specified using the dtype
keyword, which takes a dictionary mapping column names to types. To interpret data with no type inference, use the type str
or object
.
pd.read_excel("path_to_file.xls", dtype={"MyInts": "int64", "MyText": str})Writing Excel files# Writing Excel files to disk#
To write a DataFrame
object to a sheet of an Excel file, you can use the to_excel
instance method. The arguments are largely the same as to_csv
described above, the first argument being the name of the excel file, and the optional second argument the name of the sheet to which the DataFrame
should be written. For example:
df.to_excel("path_to_file.xlsx", sheet_name="Sheet1")
Files with a .xlsx
extension will be written using xlsxwriter
(if available) or openpyxl
.
The DataFrame
will be written in a way that tries to mimic the REPL output. The index_label
will be placed in the second row instead of the first. You can place it in the first row by setting the merge_cells
option in to_excel()
to False
:
df.to_excel("path_to_file.xlsx", index_label="label", merge_cells=False)
In order to write separate DataFrames
to separate sheets in a single Excel file, one can pass an ExcelWriter
.
with pd.ExcelWriter("path_to_file.xlsx") as writer: df1.to_excel(writer, sheet_name="Sheet1") df2.to_excel(writer, sheet_name="Sheet2")
When using the engine_kwargs
parameter, pandas will pass these arguments to the engine. For this, it is important to know which function pandas is using internally.
For the engine openpyxl, pandas is using openpyxl.Workbook()
to create a new sheet and openpyxl.load_workbook()
to append data to an existing sheet. The openpyxl engine writes to (.xlsx
) and (.xlsm
) files.
For the engine xlsxwriter, pandas is using xlsxwriter.Workbook()
to write to (.xlsx
) files.
For the engine odf, pandas is using odf.opendocument.OpenDocumentSpreadsheet()
to write to (.ods
) files.
pandas supports writing Excel files to buffer-like objects such as StringIO
or BytesIO
using ExcelWriter
.
from io import BytesIO bio = BytesIO() # By setting the 'engine' in the ExcelWriter constructor. writer = pd.ExcelWriter(bio, engine="xlsxwriter") df.to_excel(writer, sheet_name="Sheet1") # Save the workbook writer.save() # Seek to the beginning and read to copy the workbook to a variable in memory bio.seek(0) workbook = bio.read()
Note
engine
is optional but recommended. Setting the engine determines the version of workbook produced. Setting engine='xlrd'
will produce an Excel 2003-format workbook (xls). Using either 'openpyxl'
or 'xlsxwriter'
will produce an Excel 2007-format workbook (xlsx). If omitted, an Excel 2007-formatted workbook is produced.
pandas chooses an Excel writer via two methods:
the engine
keyword argument
the filename extension (via the default specified in config options)
By default, pandas uses the XlsxWriter for .xlsx
, openpyxl for .xlsm
. If you have multiple engines installed, you can set the default engine through setting the config options io.excel.xlsx.writer
and io.excel.xls.writer
. pandas will fall back on openpyxl for .xlsx
files if Xlsxwriter is not available.
To specify which writer you want to use, you can pass an engine keyword argument to to_excel
and to ExcelWriter
. The built-in engines are:
openpyxl
: version 2.4 or higher is required
xlsxwriter
# By setting the 'engine' in the DataFrame 'to_excel()' methods. df.to_excel("path_to_file.xlsx", sheet_name="Sheet1", engine="xlsxwriter") # By setting the 'engine' in the ExcelWriter constructor. writer = pd.ExcelWriter("path_to_file.xlsx", engine="xlsxwriter") # Or via pandas configuration. from pandas import options # noqa: E402 options.io.excel.xlsx.writer = "xlsxwriter" df.to_excel("path_to_file.xlsx", sheet_name="Sheet1")Style and formatting#
The look and feel of Excel worksheets created from pandas can be modified using the following parameters on the DataFrame
âs to_excel
method.
float_format
: Format string for floating point numbers (default None
).
freeze_panes
: A tuple of two integers representing the bottommost row and rightmost column to freeze. Each of these parameters is one-based, so (1, 1) will freeze the first row and first column (default None
).
Using the Xlsxwriter engine provides many options for controlling the format of an Excel worksheet created with the to_excel
method. Excellent examples can be found in the Xlsxwriter documentation here: https://xlsxwriter.readthedocs.io/working_with_pandas.html
The io methods for Excel files also support reading and writing OpenDocument spreadsheets using the odfpy module. The semantics and features for reading and writing OpenDocument spreadsheets match what can be done for Excel files using engine='odf'
. The optional dependency âodfpyâ needs to be installed.
The read_excel()
method can read OpenDocument spreadsheets
# Returns a DataFrame pd.read_excel("path_to_file.ods", engine="odf")
Similarly, the to_excel()
method can write OpenDocument spreadsheets
# Writes DataFrame to a .ods file df.to_excel("path_to_file.ods", engine="odf")Binary Excel (.xlsb) files#
The read_excel()
method can also read binary Excel files using the pyxlsb
module. The semantics and features for reading binary Excel files mostly match what can be done for Excel files using engine='pyxlsb'
. pyxlsb
does not recognize datetime types in files and will return floats instead (you can use calamine if you need recognize datetime types).
# Returns a DataFrame pd.read_excel("path_to_file.xlsb", engine="pyxlsb")
Note
Currently pandas only supports reading binary Excel files. Writing is not implemented.
Calamine (Excel and ODS files)#The read_excel()
method can read Excel file (.xlsx
, .xlsm
, .xls
, .xlsb
) and OpenDocument spreadsheets (.ods
) using the python-calamine
module. This module is a binding for Rust library calamine and is faster than other engines in most cases. The optional dependency âpython-calamineâ needs to be installed.
# Returns a DataFrame pd.read_excel("path_to_file.xlsb", engine="calamine")Clipboard#
A handy way to grab data is to use the read_clipboard()
method, which takes the contents of the clipboard buffer and passes them to the read_csv
method. For instance, you can copy the following text to the clipboard (CTRL-C on many operating systems):
A B C x 1 4 p y 2 5 q z 3 6 r
And then import the data directly to a DataFrame
by calling:
>>> clipdf = pd.read_clipboard() >>> clipdf A B C x 1 4 p y 2 5 q z 3 6 r
The to_clipboard
method can be used to write the contents of a DataFrame
to the clipboard. Following which you can paste the clipboard contents into other applications (CTRL-V on many operating systems). Here we illustrate writing a DataFrame
into clipboard and reading it back.
>>> df = pd.DataFrame( ... {"A": [1, 2, 3], "B": [4, 5, 6], "C": ["p", "q", "r"]}, index=["x", "y", "z"] ... ) >>> df A B C x 1 4 p y 2 5 q z 3 6 r >>> df.to_clipboard() >>> pd.read_clipboard() A B C x 1 4 p y 2 5 q z 3 6 r
We can see that we got the same content back, which we had earlier written to the clipboard.
Note
You may need to install xclip or xsel (with PyQt5, PyQt4 or qtpy) on Linux to use these methods.
Pickling#All pandas objects are equipped with to_pickle
methods which use Pythonâs cPickle
module to save data structures to disk using the pickle format.
In [436]: df Out[436]: c1 a c2 b d lvl1 lvl2 a c 1 5 d 2 6 b c 3 7 d 4 8 In [437]: df.to_pickle("foo.pkl")
The read_pickle
function in the pandas
namespace can be used to load any pickled pandas object (or any other pickled object) from file:
In [438]: pd.read_pickle("foo.pkl") Out[438]: c1 a c2 b d lvl1 lvl2 a c 1 5 d 2 6 b c 3 7 d 4 8
Warning
read_pickle()
is only guaranteed backwards compatible back to a few minor release.
read_pickle()
, DataFrame.to_pickle()
and Series.to_pickle()
can read and write compressed pickle files. The compression types of gzip
, bz2
, xz
, zstd
are supported for reading and writing. The zip
file format only supports reading and must contain only one data file to be read.
The compression type can be an explicit parameter or be inferred from the file extension. If âinferâ, then use gzip
, bz2
, zip
, xz
, zstd
if filename ends in '.gz'
, '.bz2'
, '.zip'
, '.xz'
, or '.zst'
, respectively.
The compression parameter can also be a dict
in order to pass options to the compression protocol. It must have a 'method'
key set to the name of the compression protocol, which must be one of {'zip'
, 'gzip'
, 'bz2'
, 'xz'
, 'zstd'
}. All other key-value pairs are passed to the underlying compression library.
In [439]: df = pd.DataFrame( .....: { .....: "A": np.random.randn(1000), .....: "B": "foo", .....: "C": pd.date_range("20130101", periods=1000, freq="s"), .....: } .....: ) .....: In [440]: df Out[440]: A B C 0 -0.317441 foo 2013-01-01 00:00:00 1 -1.236269 foo 2013-01-01 00:00:01 2 0.896171 foo 2013-01-01 00:00:02 3 -0.487602 foo 2013-01-01 00:00:03 4 -0.082240 foo 2013-01-01 00:00:04 .. ... ... ... 995 -0.171092 foo 2013-01-01 00:16:35 996 1.786173 foo 2013-01-01 00:16:36 997 -0.575189 foo 2013-01-01 00:16:37 998 0.820750 foo 2013-01-01 00:16:38 999 -1.256530 foo 2013-01-01 00:16:39 [1000 rows x 3 columns]
Using an explicit compression type:
In [441]: df.to_pickle("data.pkl.compress", compression="gzip") In [442]: rt = pd.read_pickle("data.pkl.compress", compression="gzip") In [443]: rt Out[443]: A B C 0 -0.317441 foo 2013-01-01 00:00:00 1 -1.236269 foo 2013-01-01 00:00:01 2 0.896171 foo 2013-01-01 00:00:02 3 -0.487602 foo 2013-01-01 00:00:03 4 -0.082240 foo 2013-01-01 00:00:04 .. ... ... ... 995 -0.171092 foo 2013-01-01 00:16:35 996 1.786173 foo 2013-01-01 00:16:36 997 -0.575189 foo 2013-01-01 00:16:37 998 0.820750 foo 2013-01-01 00:16:38 999 -1.256530 foo 2013-01-01 00:16:39 [1000 rows x 3 columns]
Inferring compression type from the extension:
In [444]: df.to_pickle("data.pkl.xz", compression="infer") In [445]: rt = pd.read_pickle("data.pkl.xz", compression="infer") In [446]: rt Out[446]: A B C 0 -0.317441 foo 2013-01-01 00:00:00 1 -1.236269 foo 2013-01-01 00:00:01 2 0.896171 foo 2013-01-01 00:00:02 3 -0.487602 foo 2013-01-01 00:00:03 4 -0.082240 foo 2013-01-01 00:00:04 .. ... ... ... 995 -0.171092 foo 2013-01-01 00:16:35 996 1.786173 foo 2013-01-01 00:16:36 997 -0.575189 foo 2013-01-01 00:16:37 998 0.820750 foo 2013-01-01 00:16:38 999 -1.256530 foo 2013-01-01 00:16:39 [1000 rows x 3 columns]
The default is to âinferâ:
In [447]: df.to_pickle("data.pkl.gz") In [448]: rt = pd.read_pickle("data.pkl.gz") In [449]: rt Out[449]: A B C 0 -0.317441 foo 2013-01-01 00:00:00 1 -1.236269 foo 2013-01-01 00:00:01 2 0.896171 foo 2013-01-01 00:00:02 3 -0.487602 foo 2013-01-01 00:00:03 4 -0.082240 foo 2013-01-01 00:00:04 .. ... ... ... 995 -0.171092 foo 2013-01-01 00:16:35 996 1.786173 foo 2013-01-01 00:16:36 997 -0.575189 foo 2013-01-01 00:16:37 998 0.820750 foo 2013-01-01 00:16:38 999 -1.256530 foo 2013-01-01 00:16:39 [1000 rows x 3 columns] In [450]: df["A"].to_pickle("s1.pkl.bz2") In [451]: rt = pd.read_pickle("s1.pkl.bz2") In [452]: rt Out[452]: 0 -0.317441 1 -1.236269 2 0.896171 3 -0.487602 4 -0.082240 ... 995 -0.171092 996 1.786173 997 -0.575189 998 0.820750 999 -1.256530 Name: A, Length: 1000, dtype: float64
Passing options to the compression protocol in order to speed up compression:
In [453]: df.to_pickle("data.pkl.gz", compression={"method": "gzip", "compresslevel": 1})msgpack#
pandas support for msgpack
has been removed in version 1.0.0. It is recommended to use pickle instead.
Alternatively, you can also the Arrow IPC serialization format for on-the-wire transmission of pandas objects. For documentation on pyarrow, see here.
HDF5 (PyTables)#HDFStore
is a dict-like object which reads and writes pandas using the high performance HDF5 format using the excellent PyTables library. See the cookbook for some advanced strategies
Warning
pandas uses PyTables for reading and writing HDF5 files, which allows serializing object-dtype data with pickle. Loading pickled data received from untrusted sources can be unsafe.
See: https://docs.python.org/3/library/pickle.html for more.
In [454]: store = pd.HDFStore("store.h5") In [455]: print(store) <class 'pandas.io.pytables.HDFStore'> File path: store.h5
Objects can be written to the file just like adding key-value pairs to a dict:
In [456]: index = pd.date_range("1/1/2000", periods=8) In [457]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"]) In [458]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=["A", "B", "C"]) # store.put('s', s) is an equivalent method In [459]: store["s"] = s In [460]: store["df"] = df In [461]: store Out[461]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5
In a current or later Python session, you can retrieve stored objects:
# store.get('df') is an equivalent method In [462]: store["df"] Out[462]: A B C 2000-01-01 0.858644 -0.851236 1.058006 2000-01-02 -0.080372 -1.268121 1.561967 2000-01-03 0.816983 1.965656 -1.169408 2000-01-04 0.712795 -0.062433 0.736755 2000-01-05 -0.298721 -1.988045 1.475308 2000-01-06 1.103675 1.382242 -0.650762 2000-01-07 -0.729161 -0.142928 -1.063038 2000-01-08 -1.005977 0.465222 -0.094517 # dotted (attribute) access provides get as well In [463]: store.df Out[463]: A B C 2000-01-01 0.858644 -0.851236 1.058006 2000-01-02 -0.080372 -1.268121 1.561967 2000-01-03 0.816983 1.965656 -1.169408 2000-01-04 0.712795 -0.062433 0.736755 2000-01-05 -0.298721 -1.988045 1.475308 2000-01-06 1.103675 1.382242 -0.650762 2000-01-07 -0.729161 -0.142928 -1.063038 2000-01-08 -1.005977 0.465222 -0.094517
Deletion of the object specified by the key:
# store.remove('df') is an equivalent method In [464]: del store["df"] In [465]: store Out[465]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5
Closing a Store and using a context manager:
In [466]: store.close() In [467]: store Out[467]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 In [468]: store.is_open Out[468]: False # Working with, and automatically closing the store using a context manager In [469]: with pd.HDFStore("store.h5") as store: .....: store.keys() .....:Read/write API#
HDFStore
supports a top-level API using read_hdf
for reading and to_hdf
for writing, similar to how read_csv
and to_csv
work.
In [470]: df_tl = pd.DataFrame({"A": list(range(5)), "B": list(range(5))}) In [471]: df_tl.to_hdf("store_tl.h5", key="table", append=True) In [472]: pd.read_hdf("store_tl.h5", "table", where=["index>2"]) Out[472]: A B 3 3 3 4 4 4
HDFStore will by default not drop rows that are all missing. This behavior can be changed by setting dropna=True
.
In [473]: df_with_missing = pd.DataFrame( .....: { .....: "col1": [0, np.nan, 2], .....: "col2": [1, np.nan, np.nan], .....: } .....: ) .....: In [474]: df_with_missing Out[474]: col1 col2 0 0.0 1.0 1 NaN NaN 2 2.0 NaN In [475]: df_with_missing.to_hdf("file.h5", key="df_with_missing", format="table", mode="w") In [476]: pd.read_hdf("file.h5", "df_with_missing") Out[476]: col1 col2 0 0.0 1.0 1 NaN NaN 2 2.0 NaN In [477]: df_with_missing.to_hdf( .....: "file.h5", key="df_with_missing", format="table", mode="w", dropna=True .....: ) .....: In [478]: pd.read_hdf("file.h5", "df_with_missing") Out[478]: col1 col2 0 0.0 1.0 2 2.0 NaNFixed format#
The examples above show storing using put
, which write the HDF5 to PyTables
in a fixed array format, called the fixed
format. These types of stores are not appendable once written (though you can simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety. They also do not support dataframes with non-unique column names. The fixed
format stores offer very fast writing and slightly faster reading than table
stores. This format is specified by default when using put
or to_hdf
or by format='fixed'
or format='f'
.
Warning
A fixed
format will raise a TypeError
if you try to retrieve using a where
:
In [479]: pd.DataFrame(np.random.randn(10, 2)).to_hdf("test_fixed.h5", key="df") In [480]: pd.read_hdf("test_fixed.h5", "df", where="index>5") --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[480], line 1 ----> 1 pd.read_hdf("test_fixed.h5", "df", where="index>5") File ~/work/pandas/pandas/pandas/io/pytables.py:465, in read_hdf(path_or_buf, key, mode, errors, where, start, stop, columns, iterator, chunksize, **kwargs) 460 raise ValueError( 461 "key must be provided when HDF5 " 462 "file contains multiple datasets." 463 ) 464 key = candidate_only_group._v_pathname --> 465 return store.select( 466 key, 467 where=where, 468 start=start, 469 stop=stop, 470 columns=columns, 471 iterator=iterator, 472 chunksize=chunksize, 473 auto_close=auto_close, 474 ) 475 except (ValueError, TypeError, LookupError): 476 if not isinstance(path_or_buf, HDFStore): 477 # if there is an error, close the store if we opened it. File ~/work/pandas/pandas/pandas/io/pytables.py:919, in HDFStore.select(self, key, where, start, stop, columns, iterator, chunksize, auto_close) 905 # create the iterator 906 it = TableIterator( 907 self, 908 s, (...) 916 auto_close=auto_close, 917 ) --> 919 return it.get_result() File ~/work/pandas/pandas/pandas/io/pytables.py:2042, in TableIterator.get_result(self, coordinates) 2039 where = self.where 2041 # directly return the result -> 2042 results = self.func(self.start, self.stop, where) 2043 self.close() 2044 return results File ~/work/pandas/pandas/pandas/io/pytables.py:903, in HDFStore.select.<locals>.func(_start, _stop, _where) 902 def func(_start, _stop, _where): --> 903 return s.read(start=_start, stop=_stop, where=_where, columns=columns) File ~/work/pandas/pandas/pandas/io/pytables.py:3345, in BlockManagerFixed.read(self, where, columns, start, stop) 3337 def read( 3338 self, 3339 where=None, (...) 3343 ) -> DataFrame: 3344 # start, stop applied to rows, so 0th axis only -> 3345 self.validate_read(columns, where) 3346 select_axis = self.obj_type()._get_block_manager_axis(0) 3348 axes = [] File ~/work/pandas/pandas/pandas/io/pytables.py:2949, in GenericFixed.validate_read(self, columns, where) 2944 raise TypeError( 2945 "cannot pass a column specification when reading " 2946 "a Fixed format store. this store must be selected in its entirety" 2947 ) 2948 if where is not None: -> 2949 raise TypeError( 2950 "cannot pass a where specification when reading " 2951 "from a Fixed format store. this store must be selected in its entirety" 2952 ) TypeError: cannot pass a where specification when reading from a Fixed format store. this store must be selected in its entiretyTable format#
HDFStore
supports another PyTables
format on disk, the table
format. Conceptually a table
is shaped very much like a DataFrame, with rows and columns. A table
may be appended to in the same or other sessions. In addition, delete and query type operations are supported. This format is specified by format='table'
or format='t'
to append
or put
or to_hdf
.
This format can be set as an option as well pd.set_option('io.hdf.default_format','table')
to enable put/append/to_hdf
to by default store in the table
format.
In [481]: store = pd.HDFStore("store.h5") In [482]: df1 = df[0:4] In [483]: df2 = df[4:] # append data (creates a table automatically) In [484]: store.append("df", df1) In [485]: store.append("df", df2) In [486]: store Out[486]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 # select the entire object In [487]: store.select("df") Out[487]: A B C 2000-01-01 0.858644 -0.851236 1.058006 2000-01-02 -0.080372 -1.268121 1.561967 2000-01-03 0.816983 1.965656 -1.169408 2000-01-04 0.712795 -0.062433 0.736755 2000-01-05 -0.298721 -1.988045 1.475308 2000-01-06 1.103675 1.382242 -0.650762 2000-01-07 -0.729161 -0.142928 -1.063038 2000-01-08 -1.005977 0.465222 -0.094517 # the type of stored data In [488]: store.root.df._v_attrs.pandas_type Out[488]: 'frame_table'
Note
You can also create a table
by passing format='table'
or format='t'
to a put
operation.
Keys to a store can be specified as a string. These can be in a hierarchical path-name like format (e.g. foo/bar/bah
), which will generate a hierarchy of sub-stores (or Groups
in PyTables parlance). Keys can be specified without the leading â/â and are always absolute (e.g. âfooâ refers to â/fooâ). Removal operations can remove everything in the sub-store and below, so be careful.
In [489]: store.put("foo/bar/bah", df) In [490]: store.append("food/orange", df) In [491]: store.append("food/apple", df) In [492]: store Out[492]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 # a list of keys are returned In [493]: store.keys() Out[493]: ['/df', '/food/apple', '/food/orange', '/foo/bar/bah'] # remove all nodes under this level In [494]: store.remove("food") In [495]: store Out[495]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5
You can walk through the group hierarchy using the walk
method which will yield a tuple for each group key along with the relative keys of its contents.
In [496]: for (path, subgroups, subkeys) in store.walk(): .....: for subgroup in subgroups: .....: print("GROUP: {}/{}".format(path, subgroup)) .....: for subkey in subkeys: .....: key = "/".join([path, subkey]) .....: print("KEY: {}".format(key)) .....: print(store.get(key)) .....: GROUP: /foo KEY: /df A B C 2000-01-01 0.858644 -0.851236 1.058006 2000-01-02 -0.080372 -1.268121 1.561967 2000-01-03 0.816983 1.965656 -1.169408 2000-01-04 0.712795 -0.062433 0.736755 2000-01-05 -0.298721 -1.988045 1.475308 2000-01-06 1.103675 1.382242 -0.650762 2000-01-07 -0.729161 -0.142928 -1.063038 2000-01-08 -1.005977 0.465222 -0.094517 GROUP: /foo/bar KEY: /foo/bar/bah A B C 2000-01-01 0.858644 -0.851236 1.058006 2000-01-02 -0.080372 -1.268121 1.561967 2000-01-03 0.816983 1.965656 -1.169408 2000-01-04 0.712795 -0.062433 0.736755 2000-01-05 -0.298721 -1.988045 1.475308 2000-01-06 1.103675 1.382242 -0.650762 2000-01-07 -0.729161 -0.142928 -1.063038 2000-01-08 -1.005977 0.465222 -0.094517
Warning
Hierarchical keys cannot be retrieved as dotted (attribute) access as described above for items stored under the root node.
In [497]: store.foo.bar.bah --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[497], line 1 ----> 1 store.foo.bar.bah File ~/work/pandas/pandas/pandas/io/pytables.py:626, in HDFStore.__getattr__(self, name) 624 """allow attribute access to get stores""" 625 try: --> 626 return self.get(name) 627 except (KeyError, ClosedFileError): 628 pass File ~/work/pandas/pandas/pandas/io/pytables.py:826, in HDFStore.get(self, key) 824 if group is None: 825 raise KeyError(f"No object named {key} in the file") --> 826 return self._read_group(group) File ~/work/pandas/pandas/pandas/io/pytables.py:1891, in HDFStore._read_group(self, group) 1890 def _read_group(self, group: Node): -> 1891 s = self._create_storer(group) 1892 s.infer_axes() 1893 return s.read() File ~/work/pandas/pandas/pandas/io/pytables.py:1765, in HDFStore._create_storer(self, group, format, value, encoding, errors) 1763 tt = "generic_table" 1764 else: -> 1765 raise TypeError( 1766 "cannot create a storer if the object is not existing " 1767 "nor a value are passed" 1768 ) 1769 else: 1770 if isinstance(value, Series): TypeError: cannot create a storer if the object is not existing nor a value are passed
# you can directly access the actual PyTables node but using the root node In [498]: store.root.foo.bar.bah Out[498]: /foo/bar/bah (Group) '' children := ['axis0' (Array), 'axis1' (Array), 'block0_items' (Array), 'block0_values' (Array)]
Instead, use explicit string based keys:
In [499]: store["foo/bar/bah"] Out[499]: A B C 2000-01-01 0.858644 -0.851236 1.058006 2000-01-02 -0.080372 -1.268121 1.561967 2000-01-03 0.816983 1.965656 -1.169408 2000-01-04 0.712795 -0.062433 0.736755 2000-01-05 -0.298721 -1.988045 1.475308 2000-01-06 1.103675 1.382242 -0.650762 2000-01-07 -0.729161 -0.142928 -1.063038 2000-01-08 -1.005977 0.465222 -0.094517Storing types# Storing mixed types in a table#
Storing mixed-dtype data is supported. Strings are stored as a fixed-width using the maximum size of the appended column. Subsequent attempts at appending longer strings will raise a ValueError
.
Passing min_itemsize={`values`: size}
as a parameter to append will set a larger minimum for the string columns. Storing floats, strings, ints, bools, datetime64
are currently supported. For string columns, passing nan_rep = 'nan'
to append will change the default nan representation on disk (which converts to/from np.nan
), this defaults to nan
.
In [500]: df_mixed = pd.DataFrame( .....: { .....: "A": np.random.randn(8), .....: "B": np.random.randn(8), .....: "C": np.array(np.random.randn(8), dtype="float32"), .....: "string": "string", .....: "int": 1, .....: "bool": True, .....: "datetime64": pd.Timestamp("20010102"), .....: }, .....: index=list(range(8)), .....: ) .....: In [501]: df_mixed.loc[df_mixed.index[3:5], ["A", "B", "string", "datetime64"]] = np.nan In [502]: store.append("df_mixed", df_mixed, min_itemsize={"values": 50}) In [503]: df_mixed1 = store.select("df_mixed") In [504]: df_mixed1 Out[504]: A B C ... int bool datetime64 0 0.013747 -1.166078 -1.292080 ... 1 True 1970-01-01 00:00:00.978393600 1 -0.712009 0.247572 1.526911 ... 1 True 1970-01-01 00:00:00.978393600 2 -0.645096 1.687406 0.288504 ... 1 True 1970-01-01 00:00:00.978393600 3 NaN NaN 0.097771 ... 1 True NaT 4 NaN NaN 1.536408 ... 1 True NaT 5 -0.023202 0.043702 0.926790 ... 1 True 1970-01-01 00:00:00.978393600 6 2.359782 0.088224 -0.676448 ... 1 True 1970-01-01 00:00:00.978393600 7 -0.143428 -0.813360 -0.179724 ... 1 True 1970-01-01 00:00:00.978393600 [8 rows x 7 columns] In [505]: df_mixed1.dtypes.value_counts() Out[505]: float64 2 float32 1 object 1 int64 1 bool 1 datetime64[ns] 1 Name: count, dtype: int64 # we have provided a minimum string column size In [506]: store.root.df_mixed.table Out[506]: /df_mixed/table (Table(8,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1), "values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2), "values_block_2": StringCol(itemsize=50, shape=(1,), dflt=b'', pos=3), "values_block_3": Int64Col(shape=(1,), dflt=0, pos=4), "values_block_4": BoolCol(shape=(1,), dflt=False, pos=5), "values_block_5": Int64Col(shape=(1,), dflt=0, pos=6)} byteorder := 'little' chunkshape := (689,) autoindex := True colindexes := { "index": Index(6, mediumshuffle, zlib(1)).is_csi=False}Storing MultiIndex DataFrames#
Storing MultiIndex DataFrames
as tables is very similar to storing/selecting from homogeneous index DataFrames
.
In [507]: index = pd.MultiIndex( .....: levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], .....: codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], .....: names=["foo", "bar"], .....: ) .....: In [508]: df_mi = pd.DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) In [509]: df_mi Out[509]: A B C foo bar foo one -1.303456 -0.642994 -0.649456 two 1.012694 0.414147 1.950460 three 1.094544 -0.802899 -0.583343 bar one 0.410395 0.618321 0.560398 two 1.434027 -0.033270 0.343197 baz two -1.646063 -0.695847 -0.429156 three -0.244688 -1.428229 -0.138691 qux one 1.866184 -1.446617 0.036660 two -1.660522 0.929553 -1.298649 three 3.565769 0.682402 1.041927 In [510]: store.append("df_mi", df_mi) In [511]: store.select("df_mi") Out[511]: A B C foo bar foo one -1.303456 -0.642994 -0.649456 two 1.012694 0.414147 1.950460 three 1.094544 -0.802899 -0.583343 bar one 0.410395 0.618321 0.560398 two 1.434027 -0.033270 0.343197 baz two -1.646063 -0.695847 -0.429156 three -0.244688 -1.428229 -0.138691 qux one 1.866184 -1.446617 0.036660 two -1.660522 0.929553 -1.298649 three 3.565769 0.682402 1.041927 # the levels are automatically included as data columns In [512]: store.select("df_mi", "foo=bar") Out[512]: A B C foo bar bar one 0.410395 0.618321 0.560398 two 1.434027 -0.033270 0.343197
Note
The index
keyword is reserved and cannot be use as a level name.
select
and delete
operations have an optional criterion that can be specified to select/delete only a subset of the data. This allows one to have a very large on-disk table and retrieve only a portion of the data.
A query is specified using the Term
class under the hood, as a boolean expression.
index
and columns
are supported indexers of DataFrames
.
if data_columns
are specified, these can be used as additional indexers.
level name in a MultiIndex, with default name level_0
, level_1
, ⦠if not provided.
Valid comparison operators are:
=, ==, !=, >, >=, <, <=
Valid boolean expressions are combined with:
|
: or
&
: and
(
and )
: for grouping
These rules are similar to how boolean expressions are used in pandas for indexing.
Note
=
will be automatically expanded to the comparison operator ==
~
is the not operator, but can only be used in very limited circumstances
If a list/tuple of expressions is passed they will be combined via &
The following are valid expressions:
'index >= date'
"columns = ['A', 'D']"
"columns in ['A', 'D']"
'columns = A'
'columns == A'
"~(columns = ['A', 'B'])"
'index > df.index[3] & string = "bar"'
'(index > df.index[3] & index <= df.index[6]) | string = "bar"'
"ts >= Timestamp('2012-02-01')"
"major_axis>=20130101"
The indexers
are on the left-hand side of the sub-expression:
columns
, major_axis
, ts
The right-hand side of the sub-expression (after a comparison operator) can be:
functions that will be evaluated, e.g. Timestamp('2012-02-01')
strings, e.g. "bar"
date-like, e.g. 20130101
, or "20130101"
lists, e.g. "['A', 'B']"
variables that are defined in the local names space, e.g. date
Note
Passing a string to a query by interpolating it into the query expression is not recommended. Simply assign the string of interest to a variable and use that variable in an expression. For example, do this
string = "HolyMoly'" store.select("df", "index == string")
instead of this
string = "HolyMoly'" store.select('df', f'index == {string}')
The latter will not work and will raise a SyntaxError
.Note that thereâs a single quote followed by a double quote in the string
variable.
If you must interpolate, use the '%r'
format specifier
store.select("df", "index == %r" % string)
which will quote string
.
Here are some examples:
In [513]: dfq = pd.DataFrame( .....: np.random.randn(10, 4), .....: columns=list("ABCD"), .....: index=pd.date_range("20130101", periods=10), .....: ) .....: In [514]: store.append("dfq", dfq, format="table", data_columns=True)
Use boolean expressions, with in-line function evaluation.
In [515]: store.select("dfq", "index>pd.Timestamp('20130104') & columns=['A', 'B']") Out[515]: A B 2013-01-05 -0.830545 -0.457071 2013-01-06 0.431186 1.049421 2013-01-07 0.617509 -0.811230 2013-01-08 0.947422 -0.671233 2013-01-09 -0.183798 -1.211230 2013-01-10 0.361428 0.887304
Use inline column reference.
In [516]: store.select("dfq", where="A>0 or C>0") Out[516]: A B C D 2013-01-02 0.658179 0.362814 -0.917897 0.010165 2013-01-03 0.905122 1.848731 -1.184241 0.932053 2013-01-05 -0.830545 -0.457071 1.565581 1.148032 2013-01-06 0.431186 1.049421 0.383309 0.595013 2013-01-07 0.617509 -0.811230 -2.088563 -1.393500 2013-01-08 0.947422 -0.671233 -0.847097 -1.187785 2013-01-10 0.361428 0.887304 0.266457 -0.399641
The columns
keyword can be supplied to select a list of columns to be returned, this is equivalent to passing a 'columns=list_of_columns_to_filter'
:
In [517]: store.select("df", "columns=['A', 'B']") Out[517]: A B 2000-01-01 0.858644 -0.851236 2000-01-02 -0.080372 -1.268121 2000-01-03 0.816983 1.965656 2000-01-04 0.712795 -0.062433 2000-01-05 -0.298721 -1.988045 2000-01-06 1.103675 1.382242 2000-01-07 -0.729161 -0.142928 2000-01-08 -1.005977 0.465222
start
and stop
parameters can be specified to limit the total search space. These are in terms of the total number of rows in a table.
Note
select
will raise a ValueError
if the query expression has an unknown variable reference. Usually this means that you are trying to select on a column that is not a data_column.
select
will raise a SyntaxError
if the query expression is not valid.
You can store and query using the timedelta64[ns]
type. Terms can be specified in the format: <float>(<unit>)
, where float may be signed (and fractional), and unit can be D,s,ms,us,ns
for the timedelta. Hereâs an example:
In [518]: from datetime import timedelta In [519]: dftd = pd.DataFrame( .....: { .....: "A": pd.Timestamp("20130101"), .....: "B": [ .....: pd.Timestamp("20130101") + timedelta(days=i, seconds=10) .....: for i in range(10) .....: ], .....: } .....: ) .....: In [520]: dftd["C"] = dftd["A"] - dftd["B"] In [521]: dftd Out[521]: A B C 0 2013-01-01 2013-01-01 00:00:10 -1 days +23:59:50 1 2013-01-01 2013-01-02 00:00:10 -2 days +23:59:50 2 2013-01-01 2013-01-03 00:00:10 -3 days +23:59:50 3 2013-01-01 2013-01-04 00:00:10 -4 days +23:59:50 4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50 5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50 6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50 7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50 8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50 9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50 In [522]: store.append("dftd", dftd, data_columns=True) In [523]: store.select("dftd", "C<'-3.5D'") Out[523]: A B C 4 1970-01-01 00:00:01.356998400 2013-01-05 00:00:10 -5 days +23:59:50 5 1970-01-01 00:00:01.356998400 2013-01-06 00:00:10 -6 days +23:59:50 6 1970-01-01 00:00:01.356998400 2013-01-07 00:00:10 -7 days +23:59:50 7 1970-01-01 00:00:01.356998400 2013-01-08 00:00:10 -8 days +23:59:50 8 1970-01-01 00:00:01.356998400 2013-01-09 00:00:10 -9 days +23:59:50 9 1970-01-01 00:00:01.356998400 2013-01-10 00:00:10 -10 days +23:59:50Query MultiIndex#
Selecting from a MultiIndex
can be achieved by using the name of the level.
In [524]: df_mi.index.names Out[524]: FrozenList(['foo', 'bar']) In [525]: store.select("df_mi", "foo=baz and bar=two") Out[525]: A B C foo bar baz two -1.646063 -0.695847 -0.429156
If the MultiIndex
levels names are None
, the levels are automatically made available via the level_n
keyword with n
the level of the MultiIndex
you want to select from.
In [526]: index = pd.MultiIndex( .....: levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], .....: codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], .....: ) .....: In [527]: df_mi_2 = pd.DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) In [528]: df_mi_2 Out[528]: A B C foo one -0.219582 1.186860 -1.437189 two 0.053768 1.872644 -1.469813 three -0.564201 0.876341 0.407749 bar one -0.232583 0.179812 0.922152 two -1.820952 -0.641360 2.133239 baz two -0.941248 -0.136307 -1.271305 three -0.099774 -0.061438 -0.845172 qux one 0.465793 0.756995 -0.541690 two -0.802241 0.877657 -2.553831 three 0.094899 -2.319519 0.293601 In [529]: store.append("df_mi_2", df_mi_2) # the levels are automatically included as data columns with keyword level_n In [530]: store.select("df_mi_2", "level_0=foo and level_1=two") Out[530]: A B C foo two 0.053768 1.872644 -1.469813Indexing#
You can create/modify an index for a table with create_table_index
after data is already in the table (after and append/put
operation). Creating a table index is highly encouraged. This will speed your queries a great deal when you use a select
with the indexed dimension as the where
.
Note
Indexes are automagically created on the indexables and any data columns you specify. This behavior can be turned off by passing index=False
to append
.
# we have automagically already created an index (in the first section) In [531]: i = store.root.df.table.cols.index.index In [532]: i.optlevel, i.kind Out[532]: (6, 'medium') # change an index by passing new parameters In [533]: store.create_table_index("df", optlevel=9, kind="full") In [534]: i = store.root.df.table.cols.index.index In [535]: i.optlevel, i.kind Out[535]: (9, 'full')
Oftentimes when appending large amounts of data to a store, it is useful to turn off index creation for each append, then recreate at the end.
In [536]: df_1 = pd.DataFrame(np.random.randn(10, 2), columns=list("AB")) In [537]: df_2 = pd.DataFrame(np.random.randn(10, 2), columns=list("AB")) In [538]: st = pd.HDFStore("appends.h5", mode="w") In [539]: st.append("df", df_1, data_columns=["B"], index=False) In [540]: st.append("df", df_2, data_columns=["B"], index=False) In [541]: st.get_storer("df").table Out[541]: /df/table (Table(20,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1), "B": Float64Col(shape=(), dflt=0.0, pos=2)} byteorder := 'little' chunkshape := (2730,)
Then create the index when finished appending.
In [542]: st.create_table_index("df", columns=["B"], optlevel=9, kind="full") In [543]: st.get_storer("df").table Out[543]: /df/table (Table(20,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1), "B": Float64Col(shape=(), dflt=0.0, pos=2)} byteorder := 'little' chunkshape := (2730,) autoindex := True colindexes := { "B": Index(9, fullshuffle, zlib(1)).is_csi=True} In [544]: st.close()
See here for how to create a completely-sorted-index (CSI) on an existing store.
Query via data columns#You can designate (and index) certain columns that you want to be able to perform queries (other than the indexable
columns, which you can always query). For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query. You can specify data_columns = True
to force all columns to be data_columns
.
In [545]: df_dc = df.copy() In [546]: df_dc["string"] = "foo" In [547]: df_dc.loc[df_dc.index[4:6], "string"] = np.nan In [548]: df_dc.loc[df_dc.index[7:9], "string"] = "bar" In [549]: df_dc["string2"] = "cool" In [550]: df_dc.loc[df_dc.index[1:3], ["B", "C"]] = 1.0 In [551]: df_dc Out[551]: A B C string string2 2000-01-01 0.858644 -0.851236 1.058006 foo cool 2000-01-02 -0.080372 1.000000 1.000000 foo cool 2000-01-03 0.816983 1.000000 1.000000 foo cool 2000-01-04 0.712795 -0.062433 0.736755 foo cool 2000-01-05 -0.298721 -1.988045 1.475308 NaN cool 2000-01-06 1.103675 1.382242 -0.650762 NaN cool 2000-01-07 -0.729161 -0.142928 -1.063038 foo cool 2000-01-08 -1.005977 0.465222 -0.094517 bar cool # on-disk operations In [552]: store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) In [553]: store.select("df_dc", where="B > 0") Out[553]: A B C string string2 2000-01-02 -0.080372 1.000000 1.000000 foo cool 2000-01-03 0.816983 1.000000 1.000000 foo cool 2000-01-06 1.103675 1.382242 -0.650762 NaN cool 2000-01-08 -1.005977 0.465222 -0.094517 bar cool # getting creative In [554]: store.select("df_dc", "B > 0 & C > 0 & string == foo") Out[554]: A B C string string2 2000-01-02 -0.080372 1.0 1.0 foo cool 2000-01-03 0.816983 1.0 1.0 foo cool # this is in-memory version of this type of selection In [555]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] Out[555]: A B C string string2 2000-01-02 -0.080372 1.0 1.0 foo cool 2000-01-03 0.816983 1.0 1.0 foo cool # we have automagically created this index and the B/C/string/string2 # columns are stored separately as ``PyTables`` columns In [556]: store.root.df_dc.table Out[556]: /df_dc/table (Table(8,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1), "B": Float64Col(shape=(), dflt=0.0, pos=2), "C": Float64Col(shape=(), dflt=0.0, pos=3), "string": StringCol(itemsize=3, shape=(), dflt=b'', pos=4), "string2": StringCol(itemsize=4, shape=(), dflt=b'', pos=5)} byteorder := 'little' chunkshape := (1680,) autoindex := True colindexes := { "index": Index(6, mediumshuffle, zlib(1)).is_csi=False, "B": Index(6, mediumshuffle, zlib(1)).is_csi=False, "C": Index(6, mediumshuffle, zlib(1)).is_csi=False, "string": Index(6, mediumshuffle, zlib(1)).is_csi=False, "string2": Index(6, mediumshuffle, zlib(1)).is_csi=False}
There is some performance degradation by making lots of columns into data columns
, so it is up to the user to designate these. In addition, you cannot change data columns (nor indexables) after the first append/put operation (Of course you can simply read in the data and create a new table!).
You can pass iterator=True
or chunksize=number_in_a_chunk
to select
and select_as_multiple
to return an iterator on the results. The default is 50,000 rows returned in a chunk.
In [557]: for df in store.select("df", chunksize=3): .....: print(df) .....: A B C 2000-01-01 0.858644 -0.851236 1.058006 2000-01-02 -0.080372 -1.268121 1.561967 2000-01-03 0.816983 1.965656 -1.169408 A B C 2000-01-04 0.712795 -0.062433 0.736755 2000-01-05 -0.298721 -1.988045 1.475308 2000-01-06 1.103675 1.382242 -0.650762 A B C 2000-01-07 -0.729161 -0.142928 -1.063038 2000-01-08 -1.005977 0.465222 -0.094517
Note
You can also use the iterator with read_hdf
which will open, then automatically close the store when finished iterating.
for df in pd.read_hdf("store.h5", "df", chunksize=3): print(df)
Note, that the chunksize keyword applies to the source rows. So if you are doing a query, then the chunksize will subdivide the total rows in the table and the query applied, returning an iterator on potentially unequal sized chunks.
Here is a recipe for generating a query and using it to create equal sized return chunks.
In [558]: dfeq = pd.DataFrame({"number": np.arange(1, 11)}) In [559]: dfeq Out[559]: number 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 In [560]: store.append("dfeq", dfeq, data_columns=["number"]) In [561]: def chunks(l, n): .....: return [l[i: i + n] for i in range(0, len(l), n)] .....: In [562]: evens = [2, 4, 6, 8, 10] In [563]: coordinates = store.select_as_coordinates("dfeq", "number=evens") In [564]: for c in chunks(coordinates, 2): .....: print(store.select("dfeq", where=c)) .....: number 1 2 3 4 number 5 6 7 8 number 9 10Advanced queries# Select a single column#
To retrieve a single indexable or data column, use the method select_column
. This will, for example, enable you to get the index very quickly. These return a Series
of the result, indexed by the row number. These do not currently accept the where
selector.
In [565]: store.select_column("df_dc", "index") Out[565]: 0 2000-01-01 1 2000-01-02 2 2000-01-03 3 2000-01-04 4 2000-01-05 5 2000-01-06 6 2000-01-07 7 2000-01-08 Name: index, dtype: datetime64[ns] In [566]: store.select_column("df_dc", "string") Out[566]: 0 foo 1 foo 2 foo 3 foo 4 NaN 5 NaN 6 foo 7 bar Name: string, dtype: objectSelecting coordinates#
Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Index
of the resulting locations. These coordinates can also be passed to subsequent where
operations.
In [567]: df_coord = pd.DataFrame( .....: np.random.randn(1000, 2), index=pd.date_range("20000101", periods=1000) .....: ) .....: In [568]: store.append("df_coord", df_coord) In [569]: c = store.select_as_coordinates("df_coord", "index > 20020101") In [570]: c Out[570]: Index([732, 733, 734, 735, 736, 737, 738, 739, 740, 741, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', length=268) In [571]: store.select("df_coord", where=c) Out[571]: 0 1 2002-01-02 0.007717 1.168386 2002-01-03 0.759328 -0.638934 2002-01-04 -1.154018 -0.324071 2002-01-05 -0.804551 -1.280593 2002-01-06 -0.047208 1.260503 ... ... ... 2002-09-22 -1.139583 0.344316 2002-09-23 -0.760643 -1.306704 2002-09-24 0.059018 1.775482 2002-09-25 1.242255 -0.055457 2002-09-26 0.410317 2.194489 [268 rows x 2 columns]Selecting using a where mask#
Sometime your query can involve creating a list of rows to select. Usually this mask
would be a resulting index
from an indexing operation. This example selects the months of a datetimeindex which are 5.
In [572]: df_mask = pd.DataFrame( .....: np.random.randn(1000, 2), index=pd.date_range("20000101", periods=1000) .....: ) .....: In [573]: store.append("df_mask", df_mask) In [574]: c = store.select_column("df_mask", "index") In [575]: where = c[pd.DatetimeIndex(c).month == 5].index In [576]: store.select("df_mask", where=where) Out[576]: 0 1 2000-05-01 1.479511 0.516433 2000-05-02 -0.334984 -1.493537 2000-05-03 0.900321 0.049695 2000-05-04 0.614266 -1.077151 2000-05-05 0.233881 0.493246 ... ... ... 2002-05-27 0.294122 0.457407 2002-05-28 -1.102535 1.215650 2002-05-29 -0.432911 0.753606 2002-05-30 -1.105212 2.311877 2002-05-31 2.567296 2.610691 [93 rows x 2 columns]Storer object#
If you want to inspect the stored object, retrieve via get_storer
. You could use this programmatically to say get the number of rows in an object.
In [577]: store.get_storer("df_dc").nrows Out[577]: 8Multiple table queries#
The methods append_to_multiple
and select_as_multiple
can perform appending/selecting from multiple tables at once. The idea is to have one table (call it the selector table) that you index most/all of the columns, and perform your queries. The other table(s) are data tables with an index matching the selector tableâs index. You can then perform a very fast query on the selector table, yet get lots of data back. This method is similar to having a very wide table, but enables more efficient queries.
The append_to_multiple
method splits a given single DataFrame into multiple tables according to d
, a dictionary that maps the table names to a list of âcolumnsâ you want in that table. If None
is used in place of a list, that table will have the remaining unspecified columns of the given DataFrame. The argument selector
defines which table is the selector table (which you can make queries from). The argument dropna
will drop rows from the input DataFrame
to ensure tables are synchronized. This means that if a row for one of the tables being written to is entirely np.nan
, that row will be dropped from all tables.
If dropna
is False, THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES. Remember that entirely np.Nan
rows are not written to the HDFStore, so if you choose to call dropna=False
, some tables may have more rows than others, and therefore select_as_multiple
may not work or it may return unexpected results.
In [578]: df_mt = pd.DataFrame( .....: np.random.randn(8, 6), .....: index=pd.date_range("1/1/2000", periods=8), .....: columns=["A", "B", "C", "D", "E", "F"], .....: ) .....: In [579]: df_mt["foo"] = "bar" In [580]: df_mt.loc[df_mt.index[1], ("A", "B")] = np.nan # you can also create the tables individually In [581]: store.append_to_multiple( .....: {"df1_mt": ["A", "B"], "df2_mt": None}, df_mt, selector="df1_mt" .....: ) .....: In [582]: store Out[582]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 # individual tables were created In [583]: store.select("df1_mt") Out[583]: A B 2000-01-01 0.162291 -0.430489 2000-01-02 NaN NaN 2000-01-03 0.429207 -1.099274 2000-01-04 1.869081 -1.466039 2000-01-05 0.092130 -1.726280 2000-01-06 0.266901 -0.036854 2000-01-07 -0.517871 -0.990317 2000-01-08 -0.231342 0.557402 In [584]: store.select("df2_mt") Out[584]: C D E F foo 2000-01-01 -2.502042 0.668149 0.460708 1.834518 bar 2000-01-02 0.130441 -0.608465 0.439872 0.506364 bar 2000-01-03 -1.069546 1.236277 0.116634 -1.772519 bar 2000-01-04 0.137462 0.313939 0.748471 -0.943009 bar 2000-01-05 0.836517 2.049798 0.562167 0.189952 bar 2000-01-06 1.112750 -0.151596 1.503311 0.939470 bar 2000-01-07 -0.294348 0.335844 -0.794159 1.495614 bar 2000-01-08 0.860312 -0.538674 -0.541986 -1.759606 bar # as a multiple In [585]: store.select_as_multiple( .....: ["df1_mt", "df2_mt"], .....: where=["A>0", "B>0"], .....: selector="df1_mt", .....: ) .....: Out[585]: Empty DataFrame Columns: [A, B, C, D, E, F, foo] Index: []Delete from a table#
You can delete from a table selectively by specifying a where
. In deleting rows, it is important to understand the PyTables
deletes rows by erasing the rows, then moving the following data. Thus deleting can potentially be a very expensive operation depending on the orientation of your data. To get optimal performance, itâs worthwhile to have the dimension you are deleting be the first of the indexables
.
Data is ordered (on the disk) in terms of the indexables
. Hereâs a simple use case. You store panel-type data, with dates in the major_axis
and ids in the minor_axis
. The data is then interleaved like this:
id_1
id_2
.
id_n
id_1
.
id_n
It should be clear that a delete operation on the major_axis
will be fairly quick, as one chunk is removed, then the following data moved. On the other hand a delete operation on the minor_axis
will be very expensive. In this case it would almost certainly be faster to rewrite the table using a where
that selects all but the missing data.
Warning
Please note that HDF5 DOES NOT RECLAIM SPACE in the h5 files automatically. Thus, repeatedly deleting (or removing nodes) and adding again, WILL TEND TO INCREASE THE FILE SIZE.
To repack and clean the file, use ptrepack.
Notes & caveats# Compression#PyTables
allows the stored data to be compressed. This applies to all kinds of stores, not just tables. Two parameters are used to control compression: complevel
and complib
.
complevel
specifies if and how hard data is to be compressed. complevel=0
and complevel=None
disables compression and 0<complevel<10
enables compression.
complib
specifies which compression library to use. If nothing is specified the default library zlib
is used. A compression library usually optimizes for either good compression rates or speed and the results will depend on the type of data. Which type of compression to choose depends on your specific needs and data. The list of supported compression libraries:
zlib: The default compression library. A classic in terms of compression, achieves good compression rates but is somewhat slow.
lzo: Fast compression and decompression.
bzip2: Good compression rates.
blosc: Fast compression and decompression.
Support for alternative blosc compressors:
blosc:blosclz This is the default compressor for blosc
blosc:lz4: A compact, very popular and fast compressor.
blosc:lz4hc: A tweaked version of LZ4, produces better compression ratios at the expense of speed.
blosc:snappy: A popular compressor used in many places.
blosc:zlib: A classic; somewhat slower than the previous ones, but achieving better compression ratios.
blosc:zstd: An extremely well balanced codec; it provides the best compression ratios among the others above, and at reasonably fast speed.
If complib
is defined as something other than the listed libraries a ValueError
exception is issued.
Note
If the library specified with the complib
option is missing on your platform, compression defaults to zlib
without further ado.
Enable compression for all objects within the file:
store_compressed = pd.HDFStore( "store_compressed.h5", complevel=9, complib="blosc:blosclz" )
Or on-the-fly compression (this only applies to tables) in stores where compression is not enabled:
store.append("df", df, complib="zlib", complevel=5)ptrepack#
PyTables
offers better write performance when tables are compressed after they are written, as opposed to turning on compression at the very beginning. You can use the supplied PyTables
utility ptrepack
. In addition, ptrepack
can change compression levels after the fact.
ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5
Furthermore ptrepack in.h5 out.h5
will repack the file to allow you to reuse previously deleted space. Alternatively, one can simply remove the file and write again, or use the copy
method.
Warning
HDFStore
is not-threadsafe for writing. The underlying PyTables
only supports concurrent reads (via threading or processes). If you need reading and writing at the same time, you need to serialize these operations in a single thread in a single process. You will corrupt your data otherwise. See the (GH 2397) for more information.
If you use locks to manage write access between multiple processes, you may want to use fsync()
before releasing write locks. For convenience you can use store.flush(fsync=True)
to do this for you.
Once a table
is created columns (DataFrame) are fixed; only exactly the same columns can be appended
Be aware that timezones (e.g., pytz.timezone('US/Eastern')
) are not necessarily equal across timezone versions. So if data is localized to a specific timezone in the HDFStore using one version of a timezone library and that data is updated with another version, the data will be converted to UTC since these timezones are not considered equal. Either use the same version of timezone library or use tz_convert
with the updated timezone definition.
Warning
PyTables
will show a NaturalNameWarning
if a column name cannot be used as an attribute selector. Natural identifiers contain only letters, numbers, and underscores, and may not begin with a number. Other identifiers cannot be used in a where
clause and are generally a bad idea.
HDFStore
will map an object dtype to the PyTables
underlying dtype. This means the following types are known to work:
Type
Represents missing values
floating : float64, float32, float16
np.nan
integer : int64, int32, int8, uint64,uint32, uint8
boolean
datetime64[ns]
NaT
timedelta64[ns]
NaT
categorical : see the section below
object : strings
np.nan
unicode
columns are not supported, and WILL FAIL.
You can write data that contains category
dtypes to a HDFStore
. Queries work the same as if it was an object array. However, the category
dtyped data is stored in a more efficient manner.
In [586]: dfcat = pd.DataFrame( .....: {"A": pd.Series(list("aabbcdba")).astype("category"), "B": np.random.randn(8)} .....: ) .....: In [587]: dfcat Out[587]: A B 0 a -1.520478 1 a -1.069391 2 b -0.551981 3 b 0.452407 4 c 0.409257 5 d 0.301911 6 b -0.640843 7 a -2.253022 In [588]: dfcat.dtypes Out[588]: A category B float64 dtype: object In [589]: cstore = pd.HDFStore("cats.h5", mode="w") In [590]: cstore.append("dfcat", dfcat, format="table", data_columns=["A"]) In [591]: result = cstore.select("dfcat", where="A in ['b', 'c']") In [592]: result Out[592]: A B 2 b -0.551981 3 b 0.452407 4 c 0.409257 6 b -0.640843 In [593]: result.dtypes Out[593]: A category B float64 dtype: objectString columns#
min_itemsize
The underlying implementation of HDFStore
uses a fixed column width (itemsize) for string columns. A string column itemsize is calculated as the maximum of the length of data (for that column) that is passed to the HDFStore
, in the first append. Subsequent appends, may introduce a string for a column larger than the column can hold, an Exception will be raised (otherwise you could have a silent truncation of these columns, leading to loss of information). In the future we may relax this and allow a user-specified truncation to occur.
Pass min_itemsize
on the first table creation to a-priori specify the minimum length of a particular string column. min_itemsize
can be an integer, or a dict mapping a column name to an integer. You can pass values
as a key to allow all indexables or data_columns to have this min_itemsize.
Passing a min_itemsize
dict will cause all passed columns to be created as data_columns automatically.
Note
If you are not passing any data_columns
, then the min_itemsize
will be the maximum of the length of any string passed
In [594]: dfs = pd.DataFrame({"A": "foo", "B": "bar"}, index=list(range(5))) In [595]: dfs Out[595]: A B 0 foo bar 1 foo bar 2 foo bar 3 foo bar 4 foo bar # A and B have a size of 30 In [596]: store.append("dfs", dfs, min_itemsize=30) In [597]: store.get_storer("dfs").table Out[597]: /dfs/table (Table(5,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": StringCol(itemsize=30, shape=(2,), dflt=b'', pos=1)} byteorder := 'little' chunkshape := (963,) autoindex := True colindexes := { "index": Index(6, mediumshuffle, zlib(1)).is_csi=False} # A is created as a data_column with a size of 30 # B is size is calculated In [598]: store.append("dfs2", dfs, min_itemsize={"A": 30}) In [599]: store.get_storer("dfs2").table Out[599]: /dfs2/table (Table(5,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": StringCol(itemsize=3, shape=(1,), dflt=b'', pos=1), "A": StringCol(itemsize=30, shape=(), dflt=b'', pos=2)} byteorder := 'little' chunkshape := (1598,) autoindex := True colindexes := { "index": Index(6, mediumshuffle, zlib(1)).is_csi=False, "A": Index(6, mediumshuffle, zlib(1)).is_csi=False}
nan_rep
String columns will serialize a np.nan
(a missing value) with the nan_rep
string representation. This defaults to the string value nan
. You could inadvertently turn an actual nan
value into a missing value.
In [600]: dfss = pd.DataFrame({"A": ["foo", "bar", "nan"]}) In [601]: dfss Out[601]: A 0 foo 1 bar 2 nan In [602]: store.append("dfss", dfss) In [603]: store.select("dfss") Out[603]: A 0 foo 1 bar 2 NaN # here you need to specify a different nan rep In [604]: store.append("dfss2", dfss, nan_rep="_nan_") In [605]: store.select("dfss2") Out[605]: A 0 foo 1 bar 2 nanPerformance#
tables
format come with a writing performance penalty as compared to fixed
stores. The benefit is the ability to append/delete and query (potentially very large amounts of data). Write times are generally longer as compared with regular stores. Query times can be quite fast, especially on an indexed axis.
You can pass chunksize=<int>
to append
, specifying the write chunksize (default is 50000). This will significantly lower your memory usage on writing.
You can pass expectedrows=<int>
to the first append
, to set the TOTAL number of rows that PyTables
will expect. This will optimize read/write performance.
Duplicate rows can be written to tables, but are filtered out in selection (with the last items being selected; thus a table is unique on major, minor pairs)
A PerformanceWarning
will be raised if you are attempting to store types that will be pickled by PyTables (rather than stored as endemic types). See Here for more information and some solutions.
Feather provides binary columnar serialization for data frames. It is designed to make reading and writing data frames efficient, and to make sharing data across data analysis languages easy.
Feather is designed to faithfully serialize and de-serialize DataFrames, supporting all of the pandas dtypes, including extension dtypes such as categorical and datetime with tz.
Several caveats:
The format will NOT write an Index
, or MultiIndex
for the DataFrame
and will raise an error if a non-default one is provided. You can .reset_index()
to store the index or .reset_index(drop=True)
to ignore it.
Duplicate column names and non-string columns names are not supported
Actual Python objects in object dtype columns are not supported. These will raise a helpful error message on an attempt at serialization.
See the Full Documentation.
In [606]: df = pd.DataFrame( .....: { .....: "a": list("abc"), .....: "b": list(range(1, 4)), .....: "c": np.arange(3, 6).astype("u1"), .....: "d": np.arange(4.0, 7.0, dtype="float64"), .....: "e": [True, False, True], .....: "f": pd.Categorical(list("abc")), .....: "g": pd.date_range("20130101", periods=3), .....: "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), .....: "i": pd.date_range("20130101", periods=3, freq="ns"), .....: } .....: ) .....: In [607]: df Out[607]: a b c ... g h i 0 a 1 3 ... 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00.000000000 1 b 2 4 ... 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-01 00:00:00.000000001 2 c 3 5 ... 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-01 00:00:00.000000002 [3 rows x 9 columns] In [608]: df.dtypes Out[608]: a object b int64 c uint8 d float64 e bool f category g datetime64[ns] h datetime64[ns, US/Eastern] i datetime64[ns] dtype: object
Write to a feather file.
In [609]: df.to_feather("example.feather")
Read from a feather file.
In [610]: result = pd.read_feather("example.feather") In [611]: result Out[611]: a b c ... g h i 0 a 1 3 ... 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00.000000000 1 b 2 4 ... 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-01 00:00:00.000000001 2 c 3 5 ... 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-01 00:00:00.000000002 [3 rows x 9 columns] # we preserve dtypes In [612]: result.dtypes Out[612]: a object b int64 c uint8 d float64 e bool f category g datetime64[ns] h datetime64[ns, US/Eastern] i datetime64[ns] dtype: objectParquet#
Apache Parquet provides a partitioned binary columnar serialization for data frames. It is designed to make reading and writing data frames efficient, and to make sharing data across data analysis languages easy. Parquet can use a variety of compression techniques to shrink the file size as much as possible while still maintaining good read performance.
Parquet is designed to faithfully serialize and de-serialize DataFrame
s, supporting all of the pandas dtypes, including extension dtypes such as datetime with tz.
Several caveats.
Duplicate column names and non-string columns names are not supported.
The pyarrow
engine always writes the index to the output, but fastparquet
only writes non-default indexes. This extra column can cause problems for non-pandas consumers that are not expecting it. You can force including or omitting indexes with the index
argument, regardless of the underlying engine.
Index level names, if specified, must be strings.
In the pyarrow
engine, categorical dtypes for non-string types can be serialized to parquet, but will de-serialize as their primitive dtype.
The pyarrow
engine preserves the ordered
flag of categorical dtypes with string types. fastparquet
does not preserve the ordered
flag.
Non supported types include Interval
and actual Python object types. These will raise a helpful error message on an attempt at serialization. Period
type is supported with pyarrow >= 0.16.0.
The pyarrow
engine preserves extension data types such as the nullable integer and string data type (requiring pyarrow >= 0.16.0, and requiring the extension type to implement the needed protocols, see the extension types documentation).
You can specify an engine
to direct the serialization. This can be one of pyarrow
, or fastparquet
, or auto
. If the engine is NOT specified, then the pd.options.io.parquet.engine
option is checked; if this is also auto
, then pyarrow
is tried, and falling back to fastparquet
.
See the documentation for pyarrow and fastparquet.
Note
These engines are very similar and should read/write nearly identical parquet format files. pyarrow>=8.0.0
supports timedelta data, fastparquet>=0.1.4
supports timezone aware datetimes. These libraries differ by having different underlying dependencies (fastparquet
by using numba
, while pyarrow
uses a c-library).
In [613]: df = pd.DataFrame( .....: { .....: "a": list("abc"), .....: "b": list(range(1, 4)), .....: "c": np.arange(3, 6).astype("u1"), .....: "d": np.arange(4.0, 7.0, dtype="float64"), .....: "e": [True, False, True], .....: "f": pd.date_range("20130101", periods=3), .....: "g": pd.date_range("20130101", periods=3, tz="US/Eastern"), .....: "h": pd.Categorical(list("abc")), .....: "i": pd.Categorical(list("abc"), ordered=True), .....: } .....: ) .....: In [614]: df Out[614]: a b c d e f g h i 0 a 1 3 4.0 True 2013-01-01 2013-01-01 00:00:00-05:00 a a 1 b 2 4 5.0 False 2013-01-02 2013-01-02 00:00:00-05:00 b b 2 c 3 5 6.0 True 2013-01-03 2013-01-03 00:00:00-05:00 c c In [615]: df.dtypes Out[615]: a object b int64 c uint8 d float64 e bool f datetime64[ns] g datetime64[ns, US/Eastern] h category i category dtype: object
Write to a parquet file.
In [616]: df.to_parquet("example_pa.parquet", engine="pyarrow") In [617]: df.to_parquet("example_fp.parquet", engine="fastparquet")
Read from a parquet file.
In [618]: result = pd.read_parquet("example_fp.parquet", engine="fastparquet") In [619]: result = pd.read_parquet("example_pa.parquet", engine="pyarrow") In [620]: result.dtypes Out[620]: a object b int64 c uint8 d float64 e bool f datetime64[ns] g datetime64[ns, US/Eastern] h category i category dtype: object
By setting the dtype_backend
argument you can control the default dtypes used for the resulting DataFrame.
In [621]: result = pd.read_parquet("example_pa.parquet", engine="pyarrow", dtype_backend="pyarrow") In [622]: result.dtypes Out[622]: a string[pyarrow] b int64[pyarrow] c uint8[pyarrow] d double[pyarrow] e bool[pyarrow] f timestamp[ns][pyarrow] g timestamp[ns, tz=US/Eastern][pyarrow] h dictionary<values=string, indices=int8, ordere... i dictionary<values=string, indices=int8, ordere... dtype: object
Note
Note that this is not supported for fastparquet
.
Read only certain columns of a parquet file.
In [623]: result = pd.read_parquet( .....: "example_fp.parquet", .....: engine="fastparquet", .....: columns=["a", "b"], .....: ) .....: In [624]: result = pd.read_parquet( .....: "example_pa.parquet", .....: engine="pyarrow", .....: columns=["a", "b"], .....: ) .....: In [625]: result.dtypes Out[625]: a object b int64 dtype: objectHandling indexes#
Serializing a DataFrame
to parquet may include the implicit index as one or more columns in the output file. Thus, this code:
In [626]: df = pd.DataFrame({"a": [1, 2], "b": [3, 4]}) In [627]: df.to_parquet("test.parquet", engine="pyarrow")
creates a parquet file with three columns if you use pyarrow
for serialization: a
, b
, and __index_level_0__
. If youâre using fastparquet
, the index may or may not be written to the file.
This unexpected extra column causes some databases like Amazon Redshift to reject the file, because that column doesnât exist in the target table.
If you want to omit a dataframeâs indexes when writing, pass index=False
to to_parquet()
:
In [628]: df.to_parquet("test.parquet", index=False)
This creates a parquet file with just the two expected columns, a
and b
. If your DataFrame
has a custom index, you wonât get it back when you load this file into a DataFrame
.
Passing index=True
will always write the index, even if thatâs not the underlying engineâs default behavior.
Parquet supports partitioning of data based on the values of one or more columns.
In [629]: df = pd.DataFrame({"a": [0, 0, 1, 1], "b": [0, 1, 0, 1]}) In [630]: df.to_parquet(path="test", engine="pyarrow", partition_cols=["a"], compression=None)
The path
specifies the parent directory to which data will be saved. The partition_cols
are the column names by which the dataset will be partitioned. Columns are partitioned in the order they are given. The partition splits are determined by the unique values in the partition columns. The above example creates a partitioned dataset that may look like:
test âââ a=0 â âââ 0bac803e32dc42ae83fddfd029cbdebc.parquet â âââ ... âââ a=1 âââ e6ab24a4f45147b49b54a662f0c412a3.parquet âââ ...ORC#
Similar to the parquet format, the ORC Format is a binary columnar serialization for data frames. It is designed to make reading data frames efficient. pandas provides both the reader and the writer for the ORC format, read_orc()
and to_orc()
. This requires the pyarrow library.
Warning
It is highly recommended to install pyarrow using conda due to some issues occurred by pyarrow.
to_orc()
requires pyarrow>=7.0.0.
read_orc()
and to_orc()
are not supported on Windows yet, you can find valid environments on install optional dependencies.
For supported dtypes please refer to supported ORC features in Arrow.
Currently timezones in datetime columns are not preserved when a dataframe is converted into ORC files.
In [631]: df = pd.DataFrame( .....: { .....: "a": list("abc"), .....: "b": list(range(1, 4)), .....: "c": np.arange(4.0, 7.0, dtype="float64"), .....: "d": [True, False, True], .....: "e": pd.date_range("20130101", periods=3), .....: } .....: ) .....: In [632]: df Out[632]: a b c d e 0 a 1 4.0 True 2013-01-01 1 b 2 5.0 False 2013-01-02 2 c 3 6.0 True 2013-01-03 In [633]: df.dtypes Out[633]: a object b int64 c float64 d bool e datetime64[ns] dtype: object
Write to an orc file.
In [634]: df.to_orc("example_pa.orc", engine="pyarrow")
Read from an orc file.
In [635]: result = pd.read_orc("example_pa.orc") In [636]: result.dtypes Out[636]: a object b int64 c float64 d bool e datetime64[ns] dtype: object
Read only certain columns of an orc file.
In [637]: result = pd.read_orc( .....: "example_pa.orc", .....: columns=["a", "b"], .....: ) .....: In [638]: result.dtypes Out[638]: a object b int64 dtype: objectSQL queries#
The pandas.io.sql
module provides a collection of query wrappers to both facilitate data retrieval and to reduce dependency on DB-specific API.
Where available, users may first want to opt for Apache Arrow ADBC drivers. These drivers should provide the best performance, null handling, and type detection.
Added in version 2.2.0: Added native support for ADBC drivers
For a full list of ADBC drivers and their development status, see the ADBC Driver Implementation Status documentation.
Where an ADBC driver is not available or may be missing functionality, users should opt for installing SQLAlchemy alongside their database driver library. Examples of such drivers are psycopg2 for PostgreSQL or pymysql for MySQL. For SQLite this is included in Pythonâs standard library by default. You can find an overview of supported drivers for each SQL dialect in the SQLAlchemy docs.
If SQLAlchemy is not installed, you can use a sqlite3.Connection
in place of a SQLAlchemy engine, connection, or URI string.
See also some cookbook examples for some advanced strategies.
The key functions are:
read_sql_table
(table_name, con[, schema, ...])
Read SQL database table into a DataFrame.
read_sql_query
(sql, con[, index_col, ...])
Read SQL query into a DataFrame.
read_sql
(sql, con[, index_col, ...])
Read SQL query or database table into a DataFrame.
DataFrame.to_sql
(name, con, *[, schema, ...])
Write records stored in a DataFrame to a SQL database.
Note
The function read_sql()
is a convenience wrapper around read_sql_table()
and read_sql_query()
(and for backward compatibility) and will delegate to specific function depending on the provided input (database table name or sql query). Table names do not need to be quoted if they have special characters.
In the following example, we use the SQlite SQL database engine. You can use a temporary SQLite database where data are stored in âmemoryâ.
To connect using an ADBC driver you will want to install the adbc_driver_sqlite
using your package manager. Once installed, you can use the DBAPI interface provided by the ADBC driver to connect to your database.
import adbc_driver_sqlite.dbapi as sqlite_dbapi # Create the connection with sqlite_dbapi.connect("sqlite:///:memory:") as conn: df = pd.read_sql_table("data", conn)
To connect with SQLAlchemy you use the create_engine()
function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For more information on create_engine()
and the URI formatting, see the examples below and the SQLAlchemy documentation
In [639]: from sqlalchemy import create_engine # Create your engine. In [640]: engine = create_engine("sqlite:///:memory:")
If you want to manage your own connections you can pass one of those instead. The example below opens a connection to the database using a Python context manager that automatically closes the connection after the block has completed. See the SQLAlchemy docs for an explanation of how the database connection is handled.
with engine.connect() as conn, conn.begin(): data = pd.read_sql_table("data", conn)
Warning
When you open a connection to a database you are also responsible for closing it. Side effects of leaving a connection open may include locking the database or other breaking behaviour.
Writing DataFrames#Assuming the following data is in a DataFrame
data
, we can insert it into the database using to_sql()
.
id
Date
Col_1
Col_2
Col_3
26
2012-10-18
X
25.7
True
42
2012-10-19
Y
-12.4
False
63
2012-10-20
Z
5.73
True
In [641]: import datetime In [642]: c = ["id", "Date", "Col_1", "Col_2", "Col_3"] In [643]: d = [ .....: (26, datetime.datetime(2010, 10, 18), "X", 27.5, True), .....: (42, datetime.datetime(2010, 10, 19), "Y", -12.5, False), .....: (63, datetime.datetime(2010, 10, 20), "Z", 5.73, True), .....: ] .....: In [644]: data = pd.DataFrame(d, columns=c) In [645]: data Out[645]: id Date Col_1 Col_2 Col_3 0 26 2010-10-18 X 27.50 True 1 42 2010-10-19 Y -12.50 False 2 63 2010-10-20 Z 5.73 True In [646]: data.to_sql("data", con=engine) Out[646]: 3
With some databases, writing large DataFrames can result in errors due to packet size limitations being exceeded. This can be avoided by setting the chunksize
parameter when calling to_sql
. For example, the following writes data
to the database in batches of 1000 rows at a time:
In [647]: data.to_sql("data_chunked", con=engine, chunksize=1000) Out[647]: 3SQL data types#
Ensuring consistent data type management across SQL databases is challenging. Not every SQL database offers the same types, and even when they do the implementation of a given type can vary in ways that have subtle effects on how types can be preserved.
For the best odds at preserving database types users are advised to use ADBC drivers when available. The Arrow type system offers a wider array of types that more closely match database types than the historical pandas/NumPy type system. To illustrate, note this (non-exhaustive) listing of types available in different databases and pandas backends:
numpy/pandas
arrow
postgres
sqlite
int16/Int16
int16
SMALLINT
INTEGER
int32/Int32
int32
INTEGER
INTEGER
int64/Int64
int64
BIGINT
INTEGER
float32
float32
REAL
REAL
float64
float64
DOUBLE PRECISION
REAL
object
string
TEXT
TEXT
bool
bool_
BOOLEAN
datetime64[ns]
timestamp(us)
TIMESTAMP
datetime64[ns,tz]
timestamp(us,tz)
TIMESTAMPTZ
date32
DATE
month_day_nano_interval
INTERVAL
binary
BINARY
BLOB
decimal128
DECIMAL [1]
list
ARRAY [1]
struct
Footnotes
If you are interested in preserving database types as best as possible throughout the lifecycle of your DataFrame, users are encouraged to leverage the dtype_backend="pyarrow"
argument of read_sql()
# for roundtripping with pg_dbapi.connect(uri) as conn: df2 = pd.read_sql("pandas_table", conn, dtype_backend="pyarrow")
This will prevent your data from being converted to the traditional pandas/NumPy type system, which often converts SQL types in ways that make them impossible to round-trip.
In case an ADBC driver is not available, to_sql()
will try to map your data to an appropriate SQL data type based on the dtype of the data. When you have columns of dtype object
, pandas will try to infer the data type.
You can always override the default type by specifying the desired SQL type of any of the columns by using the dtype
argument. This argument needs a dictionary mapping column names to SQLAlchemy types (or strings for the sqlite3 fallback mode). For example, specifying to use the sqlalchemy String
type instead of the default Text
type for string columns:
In [648]: from sqlalchemy.types import String In [649]: data.to_sql("data_dtype", con=engine, dtype={"Col_1": String}) Out[649]: 3
Note
Due to the limited support for timedeltaâs in the different database flavors, columns with type timedelta64
will be written as integer values as nanoseconds to the database and a warning will be raised. The only exception to this is when using the ADBC PostgreSQL driver in which case a timedelta will be written to the database as an INTERVAL
Note
Columns of category
dtype will be converted to the dense representation as you would get with np.asarray(categorical)
(e.g. for string categories this gives an array of strings). Because of this, reading the database table back in does not generate a categorical.
Using ADBC or SQLAlchemy, to_sql()
is capable of writing datetime data that is timezone naive or timezone aware. However, the resulting data stored in the database ultimately depends on the supported data type for datetime data of the database system being used.
The following table lists supported data types for datetime data for some common databases. Other database dialects may have different data types for datetime data.
Database
SQL Datetime Types
Timezone Support
SQLite
TEXT
No
MySQL
TIMESTAMP
or DATETIME
No
PostgreSQL
TIMESTAMP
or TIMESTAMP WITH TIME ZONE
Yes
When writing timezone aware data to databases that do not support timezones, the data will be written as timezone naive timestamps that are in local time with respect to the timezone.
read_sql_table()
is also capable of reading datetime data that is timezone aware or naive. When reading TIMESTAMP WITH TIME ZONE
types, pandas will convert the data to UTC.
The parameter method
controls the SQL insertion clause used. Possible values are:
None
: Uses standard SQL INSERT
clause (one per row).
'multi'
: Pass multiple values in a single INSERT
clause. It uses a special SQL syntax not supported by all backends. This usually provides better performance for analytic databases like Presto and Redshift, but has worse performance for traditional SQL backend if the table contains many columns. For more information check the SQLAlchemy documentation.
callable with signature (pd_table, conn, keys, data_iter)
: This can be used to implement a more performant insertion method based on specific backend dialect features.
Example of a callable using PostgreSQL COPY clause:
# Alternative to_sql() *method* for DBs that support COPY FROM import csv from io import StringIO def psql_insert_copy(table, conn, keys, data_iter): """ Execute SQL statement inserting data Parameters ---------- table : pandas.io.sql.SQLTable conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection keys : list of str Column names data_iter : Iterable that iterates the values to be inserted """ # gets a DBAPI connection that can provide a cursor dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join(['"{}"'.format(k) for k in keys]) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name = table.name sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format( table_name, columns) cur.copy_expert(sql=sql, file=s_buf)Reading tables#
read_sql_table()
will read a database table given the table name and optionally a subset of columns to read.
Note
In order to use read_sql_table()
, you must have the ADBC driver or SQLAlchemy optional dependency installed.
In [650]: pd.read_sql_table("data", engine) Out[650]: index id Date Col_1 Col_2 Col_3 0 0 26 2010-10-18 X 27.50 True 1 1 42 2010-10-19 Y -12.50 False 2 2 63 2010-10-20 Z 5.73 True
Note
ADBC drivers will map database types directly back to arrow types. For other drivers note that pandas infers column dtypes from query outputs, and not by looking up data types in the physical database schema. For example, assume userid
is an integer column in a table. Then, intuitively, select userid ...
will return integer-valued series, while select cast(userid as text) ...
will return object-valued (str) series. Accordingly, if the query output is empty, then all resulting columns will be returned as object-valued (since they are most general). If you foresee that your query will sometimes generate an empty result, you may want to explicitly typecast afterwards to ensure dtype integrity.
You can also specify the name of the column as the DataFrame
index, and specify a subset of columns to be read.
In [651]: pd.read_sql_table("data", engine, index_col="id") Out[651]: index Date Col_1 Col_2 Col_3 id 26 0 2010-10-18 X 27.50 True 42 1 2010-10-19 Y -12.50 False 63 2 2010-10-20 Z 5.73 True In [652]: pd.read_sql_table("data", engine, columns=["Col_1", "Col_2"]) Out[652]: Col_1 Col_2 0 X 27.50 1 Y -12.50 2 Z 5.73
And you can explicitly force columns to be parsed as dates:
In [653]: pd.read_sql_table("data", engine, parse_dates=["Date"]) Out[653]: index id Date Col_1 Col_2 Col_3 0 0 26 2010-10-18 X 27.50 True 1 1 42 2010-10-19 Y -12.50 False 2 2 63 2010-10-20 Z 5.73 True
If needed you can explicitly specify a format string, or a dict of arguments to pass to pandas.to_datetime()
:
pd.read_sql_table("data", engine, parse_dates={"Date": "%Y-%m-%d"}) pd.read_sql_table( "data", engine, parse_dates={"Date": {"format": "%Y-%m-%d %H:%M:%S"}}, )
You can check if a table exists using has_table()
Reading from and writing to different schemaâs is supported through the schema
keyword in the read_sql_table()
and to_sql()
functions. Note however that this depends on the database flavor (sqlite does not have schemaâs). For example:
df.to_sql(name="table", con=engine, schema="other_schema") pd.read_sql_table("table", engine, schema="other_schema")Querying#
You can query using raw SQL in the read_sql_query()
function. In this case you must use the SQL variant appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language constructs, which are database-agnostic.
In [654]: pd.read_sql_query("SELECT * FROM data", engine) Out[654]: index id Date Col_1 Col_2 Col_3 0 0 26 2010-10-18 00:00:00.000000 X 27.50 1 1 1 42 2010-10-19 00:00:00.000000 Y -12.50 0 2 2 63 2010-10-20 00:00:00.000000 Z 5.73 1
Of course, you can specify a more âcomplexâ query.
In [655]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;", engine) Out[655]: id Col_1 Col_2 0 42 Y -12.5
The read_sql_query()
function supports a chunksize
argument. Specifying this will return an iterator through chunks of the query result:
In [656]: df = pd.DataFrame(np.random.randn(20, 3), columns=list("abc")) In [657]: df.to_sql(name="data_chunks", con=engine, index=False) Out[657]: 20
In [658]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks", engine, chunksize=5): .....: print(chunk) .....: a b c 0 -0.395347 -0.822726 -0.363777 1 1.676124 -0.908102 -1.391346 2 -1.094269 0.278380 1.205899 3 1.503443 0.932171 -0.709459 4 -0.645944 -1.351389 0.132023 a b c 0 0.210427 0.192202 0.661949 1 1.690629 -1.046044 0.618697 2 -0.013863 1.314289 1.951611 3 -1.485026 0.304662 1.194757 4 -0.446717 0.528496 -0.657575 a b c 0 -0.876654 0.336252 0.172668 1 0.337684 -0.411202 -0.828394 2 -0.244413 1.094948 0.087183 3 1.125934 -1.480095 1.205944 4 -0.451849 0.452214 -2.208192 a b c 0 -2.061019 0.044184 -0.017118 1 1.248959 -0.675595 -1.908296 2 -0.125934 1.491974 0.648726 3 0.391214 0.438609 1.634248 4 1.208707 -1.535740 1.620399Engine connection examples#
To connect with SQLAlchemy you use the create_engine()
function to create an engine object from database URI. You only need to create the engine once per database you are connecting to.
from sqlalchemy import create_engine engine = create_engine("postgresql://scott:tiger@localhost:5432/mydatabase") engine = create_engine("mysql+mysqldb://scott:tiger@localhost/foo") engine = create_engine("oracle://scott:[email protected]:1521/sidname") engine = create_engine("mssql+pyodbc://mydsn") # sqlite://<nohostname>/<path> # where <path> is relative: engine = create_engine("sqlite:///foo.db") # or absolute, starting with a slash: engine = create_engine("sqlite:////absolute/path/to/foo.db")
For more information see the examples the SQLAlchemy documentation
Advanced SQLAlchemy queries#You can use SQLAlchemy constructs to describe your query.
Use sqlalchemy.text()
to specify query parameters in a backend-neutral way
In [659]: import sqlalchemy as sa In [660]: pd.read_sql( .....: sa.text("SELECT * FROM data where Col_1=:col1"), engine, params={"col1": "X"} .....: ) .....: Out[660]: index id Date Col_1 Col_2 Col_3 0 0 26 2010-10-18 00:00:00.000000 X 27.5 1
If you have an SQLAlchemy description of your database you can express where conditions using SQLAlchemy expressions
In [661]: metadata = sa.MetaData() In [662]: data_table = sa.Table( .....: "data", .....: metadata, .....: sa.Column("index", sa.Integer), .....: sa.Column("Date", sa.DateTime), .....: sa.Column("Col_1", sa.String), .....: sa.Column("Col_2", sa.Float), .....: sa.Column("Col_3", sa.Boolean), .....: ) .....: In [663]: pd.read_sql(sa.select(data_table).where(data_table.c.Col_3 is True), engine) Out[663]: Empty DataFrame Columns: [index, Date, Col_1, Col_2, Col_3] Index: []
You can combine SQLAlchemy expressions with parameters passed to read_sql()
using sqlalchemy.bindparam()
In [664]: import datetime as dt In [665]: expr = sa.select(data_table).where(data_table.c.Date > sa.bindparam("date")) In [666]: pd.read_sql(expr, engine, params={"date": dt.datetime(2010, 10, 18)}) Out[666]: index Date Col_1 Col_2 Col_3 0 1 2010-10-19 Y -12.50 False 1 2 2010-10-20 Z 5.73 TrueSqlite fallback#
The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which respect the Python DB-API.
You can create connections like so:
import sqlite3 con = sqlite3.connect(":memory:")
And then issue the following queries:
data.to_sql("data", con) pd.read_sql_query("SELECT * FROM data", con)Google BigQuery#
The pandas-gbq
package provides functionality to read/write from Google BigQuery.
pandas integrates with this external package. if pandas-gbq
is installed, you can use the pandas methods pd.read_gbq
and DataFrame.to_gbq
, which will call the respective functions from pandas-gbq
.
Full documentation can be found here.
Stata format# Writing to stata format#The method DataFrame.to_stata()
will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata 12).
In [667]: df = pd.DataFrame(np.random.randn(10, 2), columns=list("AB")) In [668]: df.to_stata("stata.dta")
Stata data files have limited data type support; only strings with 244 or fewer characters, int8
, int16
, int32
, float32
and float64
can be stored in .dta
files. Additionally, Stata reserves certain values to represent missing data. Exporting a non-missing value that is outside of the permitted range in Stata for a particular data type will retype the variable to the next larger size. For example, int8
values are restricted to lie between -127 and 100 in Stata, and so variables with values above 100 will trigger a conversion to int16
. nan
values in floating points data types are stored as the basic missing data type (.
in Stata).
Note
It is not possible to export missing data values for integer data types.
The Stata writer gracefully handles other data types including int64
, bool
, uint8
, uint16
, uint32
by casting to the smallest supported type that can represent the data. For example, data with a type of uint8
will be cast to int8
if all values are less than 100 (the upper bound for non-missing int8
data in Stata), or, if values are outside of this range, the variable is cast to int16
.
Warning
Conversion from int64
to float64
may result in a loss of precision if int64
values are larger than 2**53.
Warning
StataWriter
and DataFrame.to_stata()
only support fixed width strings containing up to 244 characters, a limitation imposed by the version 115 dta file format. Attempting to write Stata dta files with strings longer than 244 characters raises a ValueError
.
The top-level function read_stata
will read a dta file and return either a DataFrame
or a pandas.api.typing.StataReader
that can be used to read the file incrementally.
In [669]: pd.read_stata("stata.dta") Out[669]: index A B 0 0 -0.165614 0.490482 1 1 -0.637829 0.067091 2 2 -0.242577 1.348038 3 3 0.647699 -0.644937 4 4 0.625771 0.918376 5 5 0.401781 -1.488919 6 6 -0.981845 -0.046882 7 7 -0.306796 0.877025 8 8 -0.336606 0.624747 9 9 -1.582600 0.806340
Specifying a chunksize
yields a pandas.api.typing.StataReader
instance that can be used to read chunksize
lines from the file at a time. The StataReader
object can be used as an iterator.
In [670]: with pd.read_stata("stata.dta", chunksize=3) as reader: .....: for df in reader: .....: print(df.shape) .....: (3, 3) (3, 3) (3, 3) (1, 3)
For more fine-grained control, use iterator=True
and specify chunksize
with each call to read()
.
In [671]: with pd.read_stata("stata.dta", iterator=True) as reader: .....: chunk1 = reader.read(5) .....: chunk2 = reader.read(5) .....:
Currently the index
is retrieved as a column.
The parameter convert_categoricals
indicates whether value labels should be read and used to create a Categorical
variable from them. Value labels can also be retrieved by the function value_labels
, which requires read()
to be called before use.
The parameter convert_missing
indicates whether missing value representations in Stata should be preserved. If False
(the default), missing values are represented as np.nan
. If True
, missing values are represented using StataMissingValue
objects, and columns containing missing values will have object
data type.
Note
read_stata()
and StataReader
support .dta formats 113-115 (Stata 10-12), 117 (Stata 13), and 118 (Stata 14).
Note
Setting preserve_dtypes=False
will upcast to the standard pandas data types: int64
for all integer types and float64
for floating point data. By default, the Stata data types are preserved when importing.
Note
All StataReader
objects, whether created by read_stata()
(when using iterator=True
or chunksize
) or instantiated by hand, must be used as context managers (e.g. the with
statement). While the close()
method is available, its use is unsupported. It is not part of the public API and will be removed in with future without warning.
Categorical
data can be exported to Stata data files as value labeled data. The exported data consists of the underlying category codes as integer data values and the categories as value labels. Stata does not have an explicit equivalent to a Categorical
and information about whether the variable is ordered is lost when exporting.
Warning
Stata only supports string value labels, and so str
is called on the categories when exporting data. Exporting Categorical
variables with non-string categories produces a warning, and can result a loss of information if the str
representations of the categories are not unique.
Labeled data can similarly be imported from Stata data files as Categorical
variables using the keyword argument convert_categoricals
(True
by default). The keyword argument order_categoricals
(True
by default) determines whether imported Categorical
variables are ordered.
Note
When importing categorical data, the values of the variables in the Stata data file are not preserved since Categorical
variables always use integer data types between -1
and n-1
where n
is the number of categories. If the original values in the Stata data file are required, these can be imported by setting convert_categoricals=False
, which will import original data (but not the variable labels). The original values can be matched to the imported categorical data since there is a simple mapping between the original Stata data values and the category codes of imported Categorical variables: missing values are assigned code -1
, and the smallest original value is assigned 0
, the second smallest is assigned 1
and so on until the largest original value is assigned the code n-1
.
Note
Stata supports partially labeled series. These series have value labels for some but not all data values. Importing a partially labeled series will produce a Categorical
with string categories for the values that are labeled and numeric categories for values with no label.
The top-level function read_sas()
can read (but not write) SAS XPORT (.xpt) and SAS7BDAT (.sas7bdat) format files.
SAS files only contain two value types: ASCII text and floating point values (usually 8 bytes but sometimes truncated). For xport files, there is no automatic type conversion to integers, dates, or categoricals. For SAS7BDAT files, the format codes may allow date variables to be automatically converted to dates. By default the whole file is read and returned as a DataFrame
.
Specify a chunksize
or use iterator=True
to obtain reader objects (XportReader
or SAS7BDATReader
) for incrementally reading the file. The reader objects also have attributes that contain additional information about the file and its variables.
Read a SAS7BDAT file:
df = pd.read_sas("sas_data.sas7bdat")
Obtain an iterator and read an XPORT file 100,000 lines at a time:
def do_something(chunk): pass with pd.read_sas("sas_xport.xpt", chunk=100000) as rdr: for chunk in rdr: do_something(chunk)
The specification for the xport file format is available from the SAS web site.
No official documentation is available for the SAS7BDAT format.
SPSS formats#The top-level function read_spss()
can read (but not write) SPSS SAV (.sav) and ZSAV (.zsav) format files.
SPSS files contain column names. By default the whole file is read, categorical columns are converted into pd.Categorical
, and a DataFrame
with all columns is returned.
Specify the usecols
parameter to obtain a subset of columns. Specify convert_categoricals=False
to avoid converting categorical columns into pd.Categorical
.
Read an SPSS file:
df = pd.read_spss("spss_data.sav")
Extract a subset of columns contained in usecols
from an SPSS file and avoid converting categorical columns into pd.Categorical
:
df = pd.read_spss( "spss_data.sav", usecols=["foo", "bar"], convert_categoricals=False, )
More information about the SAV and ZSAV file formats is available here.
Other file formats#pandas itself only supports IO with a limited set of file formats that map cleanly to its tabular data model. For reading and writing other file formats into and from pandas, we recommend these packages from the broader community.
netCDF#xarray provides data structures inspired by the pandas DataFrame
for working with multi-dimensional datasets, with a focus on the netCDF file format and easy conversion to and from pandas.
This is an informal comparison of various IO methods, using pandas 0.24.2. Timings are machine dependent and small differences should be ignored.
In [1]: sz = 1000000 In [2]: df = pd.DataFrame({'A': np.random.randn(sz), 'B': [1] * sz}) In [3]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 2 columns): A 1000000 non-null float64 B 1000000 non-null int64 dtypes: float64(1), int64(1) memory usage: 15.3 MB
The following test functions will be used below to compare the performance of several IO methods:
import numpy as np import os sz = 1000000 df = pd.DataFrame({"A": np.random.randn(sz), "B": [1] * sz}) sz = 1000000 np.random.seed(42) df = pd.DataFrame({"A": np.random.randn(sz), "B": [1] * sz}) def test_sql_write(df): if os.path.exists("test.sql"): os.remove("test.sql") sql_db = sqlite3.connect("test.sql") df.to_sql(name="test_table", con=sql_db) sql_db.close() def test_sql_read(): sql_db = sqlite3.connect("test.sql") pd.read_sql_query("select * from test_table", sql_db) sql_db.close() def test_hdf_fixed_write(df): df.to_hdf("test_fixed.hdf", key="test", mode="w") def test_hdf_fixed_read(): pd.read_hdf("test_fixed.hdf", "test") def test_hdf_fixed_write_compress(df): df.to_hdf("test_fixed_compress.hdf", key="test", mode="w", complib="blosc") def test_hdf_fixed_read_compress(): pd.read_hdf("test_fixed_compress.hdf", "test") def test_hdf_table_write(df): df.to_hdf("test_table.hdf", key="test", mode="w", format="table") def test_hdf_table_read(): pd.read_hdf("test_table.hdf", "test") def test_hdf_table_write_compress(df): df.to_hdf( "test_table_compress.hdf", key="test", mode="w", complib="blosc", format="table" ) def test_hdf_table_read_compress(): pd.read_hdf("test_table_compress.hdf", "test") def test_csv_write(df): df.to_csv("test.csv", mode="w") def test_csv_read(): pd.read_csv("test.csv", index_col=0) def test_feather_write(df): df.to_feather("test.feather") def test_feather_read(): pd.read_feather("test.feather") def test_pickle_write(df): df.to_pickle("test.pkl") def test_pickle_read(): pd.read_pickle("test.pkl") def test_pickle_write_compress(df): df.to_pickle("test.pkl.compress", compression="xz") def test_pickle_read_compress(): pd.read_pickle("test.pkl.compress", compression="xz") def test_parquet_write(df): df.to_parquet("test.parquet") def test_parquet_read(): pd.read_parquet("test.parquet")
When writing, the top three functions in terms of speed are test_feather_write
, test_hdf_fixed_write
and test_hdf_fixed_write_compress
.
In [4]: %timeit test_sql_write(df) 3.29 s ± 43.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [5]: %timeit test_hdf_fixed_write(df) 19.4 ms ± 560 µs per loop (mean ± std. dev. of 7 runs, 1 loop each) In [6]: %timeit test_hdf_fixed_write_compress(df) 19.6 ms ± 308 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) In [7]: %timeit test_hdf_table_write(df) 449 ms ± 5.61 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [8]: %timeit test_hdf_table_write_compress(df) 448 ms ± 11.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [9]: %timeit test_csv_write(df) 3.66 s ± 26.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [10]: %timeit test_feather_write(df) 9.75 ms ± 117 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) In [11]: %timeit test_pickle_write(df) 30.1 ms ± 229 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) In [12]: %timeit test_pickle_write_compress(df) 4.29 s ± 15.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [13]: %timeit test_parquet_write(df) 67.6 ms ± 706 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
When reading, the top three functions in terms of speed are test_feather_read
, test_pickle_read
and test_hdf_fixed_read
.
In [14]: %timeit test_sql_read() 1.77 s ± 17.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [15]: %timeit test_hdf_fixed_read() 19.4 ms ± 436 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) In [16]: %timeit test_hdf_fixed_read_compress() 19.5 ms ± 222 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) In [17]: %timeit test_hdf_table_read() 38.6 ms ± 857 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) In [18]: %timeit test_hdf_table_read_compress() 38.8 ms ± 1.49 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) In [19]: %timeit test_csv_read() 452 ms ± 9.04 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [20]: %timeit test_feather_read() 12.4 ms ± 99.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) In [21]: %timeit test_pickle_read() 18.4 ms ± 191 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) In [22]: %timeit test_pickle_read_compress() 915 ms ± 7.48 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [23]: %timeit test_parquet_read() 24.4 ms ± 146 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
The files test.pkl.compress
, test.parquet
and test.feather
took the least space on disk (in bytes).
29519500 Oct 10 06:45 test.csv 16000248 Oct 10 06:45 test.feather 8281983 Oct 10 06:49 test.parquet 16000857 Oct 10 06:47 test.pkl 7552144 Oct 10 06:48 test.pkl.compress 34816000 Oct 10 06:42 test.sql 24009288 Oct 10 06:43 test_fixed.hdf 24009288 Oct 10 06:43 test_fixed_compress.hdf 24458940 Oct 10 06:44 test_table.hdf 24458940 Oct 10 06:44 test_table_compress.hdf
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4