pandas provides data structures for efficiently storing sparse data. These are not necessarily sparse in the typical âmostly 0â. Rather, you can view these objects as being âcompressedâ where any data matching a specific value (NaN
/ missing value, though any value can be chosen, including 0) is omitted. The compressed values are not actually stored in the array.
In [1]: arr = np.random.randn(10) In [2]: arr[2:-2] = np.nan In [3]: ts = pd.Series(pd.arrays.SparseArray(arr)) In [4]: ts Out[4]: 0 0.469112 1 -0.282863 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 -0.861849 9 -2.104569 dtype: Sparse[float64, nan]
Notice the dtype, Sparse[float64, nan]
. The nan
means that elements in the array that are nan
arenât actually stored, only the non-nan
elements are. Those non-nan
elements have a float64
dtype.
The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame
:
In [5]: df = pd.DataFrame(np.random.randn(10000, 4)) In [6]: df.iloc[:9998] = np.nan In [7]: sdf = df.astype(pd.SparseDtype("float", np.nan)) In [8]: sdf.head() Out[8]: 0 1 2 3 0 NaN NaN NaN NaN 1 NaN NaN NaN NaN 2 NaN NaN NaN NaN 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN In [9]: sdf.dtypes Out[9]: 0 Sparse[float64, nan] 1 Sparse[float64, nan] 2 Sparse[float64, nan] 3 Sparse[float64, nan] dtype: object In [10]: sdf.sparse.density Out[10]: 0.0002
As you can see, the density (% of values that have not been âcompressedâ) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter.
In [11]: 'dense : {:0.2f} bytes'.format(df.memory_usage().sum() / 1e3) Out[11]: 'dense : 320.13 bytes' In [12]: 'sparse: {:0.2f} bytes'.format(sdf.memory_usage().sum() / 1e3) Out[12]: 'sparse: 0.22 bytes'
Functionally, their behavior should be nearly identical to their dense counterparts.
SparseArray#arrays.SparseArray
is a ExtensionArray
for storing an array of sparse values (see dtypes for more on extension arrays). It is a 1-dimensional ndarray-like object storing only values distinct from the fill_value
:
In [13]: arr = np.random.randn(10) In [14]: arr[2:5] = np.nan In [15]: arr[7:8] = np.nan In [16]: sparr = pd.arrays.SparseArray(arr) In [17]: sparr Out[17]: [-1.9556635297215477, -1.6588664275960427, nan, nan, nan, 1.1589328886422277, 0.14529711373305043, nan, 0.6060271905134522, 1.3342113401317768] Fill: nan IntIndex Indices: array([0, 1, 5, 6, 8, 9], dtype=int32)
A sparse array can be converted to a regular (dense) ndarray with numpy.asarray()
In [18]: np.asarray(sparr) Out[18]: array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453, nan, 0.606 , 1.3342])SparseDtype#
The SparseArray.dtype
property stores two pieces of information
The dtype of the non-sparse values
The scalar fill value
In [19]: sparr.dtype Out[19]: Sparse[float64, nan]
A SparseDtype
may be constructed by passing only a dtype
In [20]: pd.SparseDtype(np.dtype('datetime64[ns]')) Out[20]: Sparse[datetime64[ns], numpy.datetime64('NaT')]
in which case a default fill value will be used (for NumPy dtypes this is often the âmissingâ value for that dtype). To override this default an explicit fill value may be passed instead
In [21]: pd.SparseDtype(np.dtype('datetime64[ns]'), ....: fill_value=pd.Timestamp('2017-01-01')) ....: Out[21]: Sparse[datetime64[ns], Timestamp('2017-01-01 00:00:00')]
Finally, the string alias 'Sparse[dtype]'
may be used to specify a sparse dtype in many places
In [22]: pd.array([1, 0, 0, 2], dtype='Sparse[int]') Out[22]: [1, 0, 0, 2] Fill: 0 IntIndex Indices: array([0, 3], dtype=int32)Sparse accessor#
pandas provides a .sparse
accessor, similar to .str
for string data, .cat
for categorical data, and .dt
for datetime-like data. This namespace provides attributes and methods that are specific to sparse data.
In [23]: s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]") In [24]: s.sparse.density Out[24]: 0.5 In [25]: s.sparse.fill_value Out[25]: 0
This accessor is available only on data with SparseDtype
, and on the Series
class itself for creating a Series with sparse data from a scipy COO matrix with.
A .sparse
accessor has been added for DataFrame
as well. See Sparse accessor for more.
You can apply NumPy ufuncs to arrays.SparseArray
and get a arrays.SparseArray
as a result.
In [26]: arr = pd.arrays.SparseArray([1., np.nan, np.nan, -2., np.nan]) In [27]: np.abs(arr) Out[27]: [1.0, nan, nan, 2.0, nan] Fill: nan IntIndex Indices: array([0, 3], dtype=int32)
The ufunc is also applied to fill_value
. This is needed to get the correct dense result.
In [28]: arr = pd.arrays.SparseArray([1., -1, -1, -2., -1], fill_value=-1) In [29]: np.abs(arr) Out[29]: [1, 1, 1, 2.0, 1] Fill: 1 IntIndex Indices: array([3], dtype=int32) In [30]: np.abs(arr).to_dense() Out[30]: array([1., 1., 1., 2., 1.])
Conversion
To convert data from sparse to dense, use the .sparse
accessors
In [31]: sdf.sparse.to_dense() Out[31]: 0 1 2 3 0 NaN NaN NaN NaN 1 NaN NaN NaN NaN 2 NaN NaN NaN NaN 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN ... ... ... ... ... 9995 NaN NaN NaN NaN 9996 NaN NaN NaN NaN 9997 NaN NaN NaN NaN 9998 0.509184 -0.774928 -1.369894 -0.382141 9999 0.280249 -1.648493 1.490865 -0.890819 [10000 rows x 4 columns]
From dense to sparse, use DataFrame.astype()
with a SparseDtype
.
In [32]: dense = pd.DataFrame({"A": [1, 0, 0, 1]}) In [33]: dtype = pd.SparseDtype(int, fill_value=0) In [34]: dense.astype(dtype) Out[34]: A 0 1 1 0 2 0 3 1Interaction with scipy.sparse#
Use DataFrame.sparse.from_spmatrix()
to create a DataFrame
with sparse values from a sparse matrix.
In [35]: from scipy.sparse import csr_matrix In [36]: arr = np.random.random(size=(1000, 5)) In [37]: arr[arr < .9] = 0 In [38]: sp_arr = csr_matrix(arr) In [39]: sp_arr Out[39]: <Compressed Sparse Row sparse matrix of dtype 'float64' with 517 stored elements and shape (1000, 5)> In [40]: sdf = pd.DataFrame.sparse.from_spmatrix(sp_arr) In [41]: sdf.head() Out[41]: 0 1 2 3 4 0 0.95638 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0.999552 0 0 0.956153 0 In [42]: sdf.dtypes Out[42]: 0 Sparse[float64, 0] 1 Sparse[float64, 0] 2 Sparse[float64, 0] 3 Sparse[float64, 0] 4 Sparse[float64, 0] dtype: object
All sparse formats are supported, but matrices that are not in COOrdinate
format will be converted, copying data as needed. To convert back to sparse SciPy matrix in COO format, you can use the DataFrame.sparse.to_coo()
method:
In [43]: sdf.sparse.to_coo() Out[43]: <COOrdinate sparse matrix of dtype 'float64' with 517 stored elements and shape (1000, 5)>
Series.sparse.to_coo()
is implemented for transforming a Series
with sparse values indexed by a MultiIndex
to a scipy.sparse.coo_matrix
.
The method requires a MultiIndex
with two or more levels.
In [44]: s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan]) In [45]: s.index = pd.MultiIndex.from_tuples( ....: [ ....: (1, 2, "a", 0), ....: (1, 2, "a", 1), ....: (1, 1, "b", 0), ....: (1, 1, "b", 1), ....: (2, 1, "b", 0), ....: (2, 1, "b", 1), ....: ], ....: names=["A", "B", "C", "D"], ....: ) ....: In [46]: ss = s.astype('Sparse') In [47]: ss Out[47]: A B C D 1 2 a 0 3.0 1 NaN 1 b 0 1.0 1 3.0 2 1 b 0 NaN 1 NaN dtype: Sparse[float64, nan]
In the example below, we transform the Series
to a sparse representation of a 2-d array by specifying that the first and second MultiIndex
levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation.
In [48]: A, rows, columns = ss.sparse.to_coo( ....: row_levels=["A", "B"], column_levels=["C", "D"], sort_labels=True ....: ) ....: In [49]: A Out[49]: <COOrdinate sparse matrix of dtype 'float64' with 3 stored elements and shape (3, 4)> In [50]: A.todense() Out[50]: matrix([[0., 0., 1., 3.], [3., 0., 0., 0.], [0., 0., 0., 0.]]) In [51]: rows Out[51]: [(1, 1), (1, 2), (2, 1)] In [52]: columns Out[52]: [('a', 0), ('a', 1), ('b', 0), ('b', 1)]
Specifying different row and column labels (and not sorting them) yields a different sparse matrix:
In [53]: A, rows, columns = ss.sparse.to_coo( ....: row_levels=["A", "B", "C"], column_levels=["D"], sort_labels=False ....: ) ....: In [54]: A Out[54]: <COOrdinate sparse matrix of dtype 'float64' with 3 stored elements and shape (3, 2)> In [55]: A.todense() Out[55]: matrix([[3., 0.], [1., 3.], [0., 0.]]) In [56]: rows Out[56]: [(1, 2, 'a'), (1, 1, 'b'), (2, 1, 'b')] In [57]: columns Out[57]: [(0,), (1,)]
A convenience method Series.sparse.from_coo()
is implemented for creating a Series
with sparse values from a scipy.sparse.coo_matrix
.
In [58]: from scipy import sparse In [59]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)) In [60]: A Out[60]: <COOrdinate sparse matrix of dtype 'float64' with 3 stored elements and shape (3, 4)> In [61]: A.todense() Out[61]: matrix([[0., 0., 1., 2.], [3., 0., 0., 0.], [0., 0., 0., 0.]])
The default behaviour (with dense_index=False
) simply returns a Series
containing only the non-null entries.
In [62]: ss = pd.Series.sparse.from_coo(A) In [63]: ss Out[63]: 0 2 1.0 3 2.0 1 0 3.0 dtype: Sparse[float64, nan]
Specifying dense_index=True
will result in an index that is the Cartesian product of the row and columns coordinates of the matrix. Note that this will consume a significant amount of memory (relative to dense_index=False
) if the sparse matrix is large (and sparse) enough.
In [64]: ss_dense = pd.Series.sparse.from_coo(A, dense_index=True) In [65]: ss_dense Out[65]: 1 0 3.0 2 NaN 3 NaN 0 0 NaN 2 1.0 3 2.0 0 NaN 2 1.0 3 2.0 dtype: Sparse[float64, nan]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4