Calculate the rolling sum.
Include only float, int, boolean columns.
Added in version 1.5.0.
'cython'
: Runs the operation through C-extensions from cython.
'numba'
: Runs the operation through JIT compiled code from numba.
None
: Defaults to 'cython'
or globally setting compute.use_numba
Added in version 1.3.0.
For 'cython'
engine, there are no accepted engine_kwargs
For 'numba'
engine, the engine can accept nopython
, nogil
and parallel
dictionary keys. The values must either be True
or False
. The default engine_kwargs
for the 'numba'
engine is {'nopython': True, 'nogil': False, 'parallel': False}
Added in version 1.3.0.
Return type is the same as the original object with np.float64
dtype.
Notes
See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
Examples
>>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64
>>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64
>>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64
For DataFrame, each sum is computed column-wise.
>>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25
>>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4