A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/docs/reference/api/pandas.IntervalIndex.is_non_overlapping_monotonic.html below:

pandas.IntervalIndex.is_non_overlapping_monotonic — pandas 2.3.1 documentation

pandas.IntervalIndex.is_non_overlapping_monotonic#
IntervalIndex.is_non_overlapping_monotonic[source]#

Return a boolean whether the IntervalArray is non-overlapping and monotonic.

Non-overlapping means (no Intervals share points), and monotonic means either monotonic increasing or monotonic decreasing.

Examples

For arrays:

>>> interv_arr = pd.arrays.IntervalArray([pd.Interval(0, 1), pd.Interval(1, 5)])
>>> interv_arr
<IntervalArray>
[(0, 1], (1, 5]]
Length: 2, dtype: interval[int64, right]
>>> interv_arr.is_non_overlapping_monotonic
True
>>> interv_arr = pd.arrays.IntervalArray([pd.Interval(0, 1),
...                                       pd.Interval(-1, 0.1)])
>>> interv_arr
<IntervalArray>
[(0.0, 1.0], (-1.0, 0.1]]
Length: 2, dtype: interval[float64, right]
>>> interv_arr.is_non_overlapping_monotonic
False

For Interval Index:

>>> interv_idx = pd.interval_range(start=0, end=2)
>>> interv_idx
IntervalIndex([(0, 1], (1, 2]], dtype='interval[int64, right]')
>>> interv_idx.is_non_overlapping_monotonic
True
>>> interv_idx = pd.interval_range(start=0, end=2, closed='both')
>>> interv_idx
IntervalIndex([[0, 1], [1, 2]], dtype='interval[int64, both]')
>>> interv_idx.is_non_overlapping_monotonic
False

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4