Array of integer (optional missing) values.
Uses pandas.NA
as the missing value.
Warning
IntegerArray is currently experimental, and its API or internal implementation may change without warning.
We represent an IntegerArray with 2 numpy arrays:
data: contains a numpy integer array of the appropriate dtype
mask: a boolean array holding a mask on the data, True is missing
To construct an IntegerArray from generic array-like input, use pandas.array()
with one of the integer dtypes (see examples).
See Nullable integer data type for more.
A 1-d integer-dtype array.
A 1-d boolean-dtype array indicating missing values.
Whether to copy the values and mask.
Attributes
Methods
See also
array
Create an array using the appropriate dtype, including IntegerArray
.
Int32Dtype
An ExtensionDtype for int32 integer data.
UInt16Dtype
An ExtensionDtype for uint16 integer data.
Examples
Create an IntegerArray with pandas.array()
.
>>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype()) >>> int_array <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32
String aliases for the dtypes are also available. They are capitalized.
>>> pd.array([1, None, 3], dtype="Int32") <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32
>>> pd.array([1, None, 3], dtype="UInt16") <IntegerArray> [1, <NA>, 3] Length: 3, dtype: UInt16
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4