Return Series as ndarray or ndarray-like depending on the dtype.
Examples
>>> pd.Series([1, 2, 3]).values array([1, 2, 3])
>>> pd.Series(list("aabc")).values array(['a', 'a', 'b', 'c'], dtype=object)
>>> pd.Series(list("aabc")).astype("category").values ['a', 'a', 'b', 'c'] Categories (3, object): ['a', 'b', 'c']
Timezone aware datetime data is converted to UTC:
>>> pd.Series(pd.date_range("20130101", periods=3, tz="US/Eastern")).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4