A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/docs/dev/user_guide/../reference/api/pandas.DataFrame.quantile.html below:

pandas.DataFrame.quantile — pandas 3.0.0.dev0+2231.g4f2aa4d2be documentation

pandas.DataFrame.quantile#
DataFrame.quantile(q=0.5, axis=0, numeric_only=False, interpolation='linear', method='single')[source]#

Return values at the given quantile over requested axis.

Parameters:
qfloat or array-like, default 0.5 (50% quantile)

Value between 0 <= q <= 1, the quantile(s) to compute.

axis{0 or ‘index’, 1 or ‘columns’}, default 0

Equals 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.

numeric_onlybool, default False

Include only float, int or boolean data.

Changed in version 2.0.0: The default value of numeric_only is now False.

interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:

  • linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.

  • lower: i.

  • higher: j.

  • nearest: i or j whichever is nearest.

  • midpoint: (i + j) / 2.

method{‘single’, ‘table’}, default ‘single’

Whether to compute quantiles per-column (‘single’) or over all columns (‘table’). When ‘table’, the only allowed interpolation methods are ‘nearest’, ‘lower’, and ‘higher’.

Returns:
Series or DataFrame
If q is an array, a DataFrame will be returned where the

index is q, the columns are the columns of self, and the values are the quantiles.

If q is a float, a Series will be returned where the

index is the columns of self and the values are the quantiles.

Examples

>>> df = pd.DataFrame(
...     np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=["a", "b"]
... )
>>> df.quantile(0.1)
a    1.3
b    3.7
Name: 0.1, dtype: float64
>>> df.quantile([0.1, 0.5])
       a     b
0.1  1.3   3.7
0.5  2.5  55.0

Specifying method=’table’ will compute the quantile over all columns.

>>> df.quantile(0.1, method="table", interpolation="nearest")
a    1
b    1
Name: 0.1, dtype: int64
>>> df.quantile([0.1, 0.5], method="table", interpolation="nearest")
     a    b
0.1  1    1
0.5  3  100

Specifying numeric_only=False will also compute the quantile of datetime and timedelta data.

>>> df = pd.DataFrame(
...     {
...         "A": [1, 2],
...         "B": [pd.Timestamp("2010"), pd.Timestamp("2011")],
...         "C": [pd.Timedelta("1 days"), pd.Timedelta("2 days")],
...     }
... )
>>> df.quantile(0.5, numeric_only=False)
A                    1.5
B    2010-07-02 12:00:00
C        1 days 12:00:00
Name: 0.5, dtype: object

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4