A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/docs/dev/user_guide/../reference/api/pandas.DataFrame.notna.html below:

pandas.DataFrame.notna — pandas 3.0.0.dev0+2231.g4f2aa4d2be documentation

pandas.DataFrame.notna#
DataFrame.notna()[source]#

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values. NA values, such as None or numpy.NaN, get mapped to False values.

Returns:
DataFrame

Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame(
...     dict(
...         age=[5, 6, np.nan],
...         born=[
...             pd.NaT,
...             pd.Timestamp("1939-05-27"),
...             pd.Timestamp("1940-04-25"),
...         ],
...         name=["Alfred", "Batman", ""],
...         toy=[None, "Batmobile", "Joker"],
...     )
... )
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.notna()
     age   born  name    toy
0   True  False  True  False
1   True   True  True   True
2  False   True  True   True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.nan])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.notna()
0     True
1     True
2    False
dtype: bool

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4