Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ''
or numpy.inf
are not considered NA values. NA values, such as None or numpy.NaN
, get mapped to False values.
Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
Examples
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame( ... dict( ... age=[5, 6, np.nan], ... born=[ ... pd.NaT, ... pd.Timestamp("1939-05-27"), ... pd.Timestamp("1940-04-25"), ... ], ... name=["Alfred", "Batman", ""], ... toy=[None, "Batmobile", "Joker"], ... ) ... ) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.notna() 0 True 1 True 2 False dtype: bool
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4