A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/docs/dev/user_guide/../reference/api/pandas.DataFrame.iloc.html below:

pandas.DataFrame.iloc — pandas 3.0.0.dev0+2232.ga2315af1df documentation

pandas.DataFrame.iloc#
property DataFrame.iloc[source]#

Purely integer-location based indexing for selection by position.

Changed in version 3.0: Callables which return a tuple are deprecated as input.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

Allowed inputs are:

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position.

See also

DataFrame.iat

Fast integer location scalar accessor.

DataFrame.loc

Purely label-location based indexer for selection by label.

Series.iloc

Purely integer-location based indexing for selection by position.

Examples

>>> mydict = [
...     {"a": 1, "b": 2, "c": 3, "d": 4},
...     {"a": 100, "b": 200, "c": 300, "d": 400},
...     {"a": 1000, "b": 2000, "c": 3000, "d": 4000},
... ]
>>> df = pd.DataFrame(mydict)
>>> df
      a     b     c     d
0     1     2     3     4
1   100   200   300   400
2  1000  2000  3000  4000

Indexing just the rows

With a scalar integer.

>>> type(df.iloc[0])
<class 'pandas.Series'>
>>> df.iloc[0]
a    1
b    2
c    3
d    4
Name: 0, dtype: int64

With a list of integers.

>>> df.iloc[[0]]
   a  b  c  d
0  1  2  3  4
>>> type(df.iloc[[0]])
<class 'pandas.DataFrame'>
>>> df.iloc[[0, 1]]
     a    b    c    d
0    1    2    3    4
1  100  200  300  400

With a slice object.

>>> df.iloc[:3]
      a     b     c     d
0     1     2     3     4
1   100   200   300   400
2  1000  2000  3000  4000

With a boolean mask the same length as the index.

>>> df.iloc[[True, False, True]]
      a     b     c     d
0     1     2     3     4
2  1000  2000  3000  4000

With a callable, useful in method chains. The x passed to the lambda is the DataFrame being sliced. This selects the rows whose index label even.

>>> df.iloc[lambda x: x.index % 2 == 0]
      a     b     c     d
0     1     2     3     4
2  1000  2000  3000  4000

Indexing both axes

You can mix the indexer types for the index and columns. Use : to select the entire axis.

With scalar integers.

>>> df.iloc[0, 1]
np.int64(2)

With lists of integers.

>>> df.iloc[[0, 2], [1, 3]]
      b     d
0     2     4
2  2000  4000

With slice objects.

>>> df.iloc[1:3, 0:3]
      a     b     c
1   100   200   300
2  1000  2000  3000

With a boolean array whose length matches the columns.

>>> df.iloc[:, [True, False, True, False]]
      a     c
0     1     3
1   100   300
2  1000  3000

With a callable function that expects the Series or DataFrame.

>>> df.iloc[:, lambda df: [0, 2]]
      a     c
0     1     3
1   100   300
2  1000  3000

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4