Return cumulative maximum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative maximum.
The index or the name of the axis. 0 is equivalent to None or âindexâ. For Series this parameter is unused and defaults to 0.
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
Include only float, int, boolean columns.
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Return cumulative maximum of Series or DataFrame.
Examples
Series
>>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
>>> s.cummax() 0 2.0 1 NaN 2 5.0 3 5.0 4 5.0 dtype: float64
To include NA values in the operation, use skipna=False
>>> s.cummax(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
>>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None
or axis='index'
.
>>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0
To iterate over columns and find the maximum in each row, use axis=1
>>> df.cummax(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 1.0
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4