A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pandas.pydata.org/docs/dev/user_guide/../reference/api/pandas.DataFrame.astype.html below:

pandas.DataFrame.astype — pandas 3.0.0.dev0+2231.g4f2aa4d2be documentation

pandas.DataFrame.astype#
DataFrame.astype(dtype, copy=<no_default>, errors='raise')[source]#

Cast a pandas object to a specified dtype dtype.

This method allows the conversion of the data types of pandas objects, including DataFrames and Series, to the specified dtype. It supports casting entire objects to a single data type or applying different data types to individual columns using a mapping.

Parameters:
dtypestr, data type, Series or Mapping of column name -> data type

Use a str, numpy.dtype, pandas.ExtensionDtype or Python type to cast entire pandas object to the same type. Alternatively, use a mapping, e.g. {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

copybool, default False

Return a copy when copy=True (be very careful setting copy=False as changes to values then may propagate to other pandas objects).

Note

The copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas.

You can already get the future behavior and improvements through enabling copy on write pd.options.mode.copy_on_write = True

Deprecated since version 3.0.0.

errors{‘raise’, ‘ignore’}, default ‘raise’

Control raising of exceptions on invalid data for provided dtype.

  • raise : allow exceptions to be raised

  • ignore : suppress exceptions. On error return original object.

Returns:
same type as caller

The pandas object casted to the specified dtype.

Notes

Changed in version 2.0.0: Using astype to convert from timezone-naive dtype to timezone-aware dtype will raise an exception. Use Series.dt.tz_localize() instead.

Examples

Create a DataFrame:

>>> d = {"col1": [1, 2], "col2": [3, 4]}
>>> df = pd.DataFrame(data=d)
>>> df.dtypes
col1    int64
col2    int64
dtype: object

Cast all columns to int32:

>>> df.astype("int32").dtypes
col1    int32
col2    int32
dtype: object

Cast col1 to int32 using a dictionary:

>>> df.astype({"col1": "int32"}).dtypes
col1    int32
col2    int64
dtype: object

Create a series:

>>> ser = pd.Series([1, 2], dtype="int32")
>>> ser
0    1
1    2
dtype: int32
>>> ser.astype("int64")
0    1
1    2
dtype: int64

Convert to categorical type:

>>> ser.astype("category")
0    1
1    2
dtype: category
Categories (2, int32): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> from pandas.api.types import CategoricalDtype
>>> cat_dtype = CategoricalDtype(categories=[2, 1], ordered=True)
>>> ser.astype(cat_dtype)
0    1
1    2
dtype: category
Categories (2, int64): [2 < 1]

Create a series of dates:

>>> ser_date = pd.Series(pd.date_range("20200101", periods=3))
>>> ser_date
0   2020-01-01
1   2020-01-02
2   2020-01-03
dtype: datetime64[ns]

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4