Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None
, numpy.NaN
or pd.NaT
, get mapped to True
values. Everything else get mapped to False
values. Characters such as empty strings ââ or numpy.inf
are not considered NA values.
A boolean array of whether my values are NA.
Examples
Show which entries in a pandas.Index are NA. The result is an array.
>>> idx = pd.Index([5.2, 6.0, np.nan]) >>> idx Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True])
Empty strings are not considered NA values. None is considered an NA value.
>>> idx = pd.Index(["black", "", "red", None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True])
For datetimes, NaT (Not a Time) is considered as an NA value.
>>> idx = pd.DatetimeIndex( ... [pd.Timestamp("1940-04-25"), pd.Timestamp(""), None, pd.NaT] ... ) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[s]', freq=None) >>> idx.isna() array([False, True, True, True])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4