A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://openmath.org/cd/transc1 below:

transc1

OpenMath Content Dictionary: transc1
Canonical URL:
http://www.openmath.org/cd/transc1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
transc1.ocd
CD as XML Encoded OpenMath:
transc1.omcd
Defines:
arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh, arctan, arctanh, cos, cosh, cot, coth, csc, csch, exp, ln, log, sec, sech, sin, sinh, tan, tanh
Date:
2004-03-30
Version:
3 (Revision 1)
Review Date:
2006-03-30
Status:
official
     This document is distributed in the hope that it will be useful, 
     but WITHOUT ANY WARRANTY; without even the implied warranty of 
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

     The copyright holder grants you permission to redistribute this 
     document freely as a verbatim copy. Furthermore, the copyright
     holder permits you to develop any derived work from this document
     provided that the following conditions are met.
       a) The derived work acknowledges the fact that it is derived from
          this document, and maintains a prominent reference in the 
          work to the original source.
       b) The fact that the derived work is not the original OpenMath 
          document is stated prominently in the derived work.  Moreover if
          both this document and the derived work are Content Dictionaries
          then the derived work must include a different CDName element,
          chosen so that it cannot be confused with any works adopted by
          the OpenMath Society.  In particular, if there is a Content 
          Dictionary Group whose name is, for example, `math' containing
          Content Dictionaries named `math1', `math2' etc., then you should 
          not name a derived Content Dictionary `mathN' where N is an integer.
          However you are free to name it `private_mathN' or some such.  This
          is because the names `mathN' may be used by the OpenMath Society
          for future extensions.
       c) The derived work is distributed under terms that allow the
          compilation of derived works, but keep paragraphs a) and b)
          intact.  The simplest way to do this is to distribute the derived
          work under the OpenMath license, but this is not a requirement.
     If you have questions about this license please contact the OpenMath
     society at http://www.openmath.org.
  Author: OpenMath Consortium
  SourceURL: https://github.com/OpenMath/CDs
            

This CD holds the definitions of many transcendental functions. They are defined as in Abromowitz and Stegun (ninth printing on), with precise reductions to logs in the case of inverse functions.

Note that, if signed zeros are supported, some strict inequalities have to become weak . It is intended to be `compatible' with the MathML elements denoting trancendental functions. Some additional functions are in the CD transc2.

log
Role:
application
Description:

This symbol represents a binary log function; the first argument is the base, to which the second argument is log'ed. It is defined in Abramowitz and Stegun, Handbook of Mathematical Functions, section 4.1

Commented Mathematical property (CMP):
a^b = c implies log_a c = b
Formal Mathematical property (FMP):
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS cd="logic1" name="implies"/>
      <OMA>
        <OMS cd="relation1" name="eq"/>
        <OMA>
          <OMS cd="arith1" name="power"/>
          <OMV name="a"/>
          <OMV name="b"/>
        </OMA>
        <OMV name="c"/>
      </OMA>
      <OMA>
        <OMS cd="relation1" name="eq"/>
        <OMA>
          <OMS cd="transc1" name="log"/>
          <OMV name="a"/>
          <OMV name="c"/>
        </OMA>
        <OMV name="b"/>
      </OMA>
    </OMA>
  </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">implies</csymbol>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply><csymbol cd="arith1">power</csymbol><ci>a</ci><ci>b</ci></apply>
   <ci>c</ci>
  </apply>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply><csymbol cd="transc1">log</csymbol><ci>a</ci><ci>c</ci></apply>
   <ci>b</ci>
  </apply>
 </apply>
</math>

$a ^ $b = $c ==> log($a, $c) = $b

Example:
log 100 to base 10 (which is 2).
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="transc1" name="log"/>
    <OMF dec="10"/>
    <OMF dec="100"/>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="transc1">log</csymbol>
  <cn type="real">10</cn>
  <cn type="real">100</cn>
 </apply>
</math>
Signatures:
sts
ln
Role:
application
Description:

This symbol represents the ln function (natural logarithm) as described in Abramowitz and Stegun, section 4.1. It takes one argument. Note the description in the CMP/FMP of the branch cut. If signed zeros are in use, the inequality needs to be non-strict.

Commented Mathematical property (CMP):
-pi < Im ln x <= pi
Formal Mathematical property (FMP):
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS name="and" cd="logic1"/>
      <OMA>
        <OMS name="lt" cd="relation1"/>
        <OMA>
          <OMS name="unary_minus" cd="arith1"/>
          <OMS name="pi" cd="nums1"/>
        </OMA>
        <OMA>
          <OMS name="imaginary" cd="complex1"/>
          <OMA>
            <OMS name="ln" cd="transc1"/>
            <OMV name="x"/>
          </OMA>
        </OMA>
      </OMA>
      <OMA>
        <OMS name="leq" cd="relation1"/>
        <OMA>
          <OMS name="imaginary" cd="complex1"/>
          <OMA>
            <OMS name="ln" cd="transc1"/>
            <OMV name="x"/>
          </OMA>
        </OMA>
        <OMS name="pi" cd="nums1"/>
      </OMA>
    </OMA>
  </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">and</csymbol>
  <apply><csymbol cd="relation1">lt</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">pi</csymbol></apply>
   <apply><csymbol cd="complex1">imaginary</csymbol>
    <apply><csymbol cd="transc1">ln</csymbol><ci>x</ci></apply>
   </apply>
  </apply>
  <apply><csymbol cd="relation1">leq</csymbol>
   <apply><csymbol cd="complex1">imaginary</csymbol>
    <apply><csymbol cd="transc1">ln</csymbol><ci>x</ci></apply>
   </apply>
   <csymbol cd="nums1">pi</csymbol>
  </apply>
 </apply>
</math>

-(nums1.pi) < complex1.imaginary(ln($x)) and complex1.imaginary(ln($x)) <= nums1.pi

- π < imaginary ⁡ ( ln ⁡ ( x ) ) ∧ imaginary ⁡ ( ln ⁡ ( x ) ) ≤ π

Example:
ln 1 (which is 0).
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="transc1" name="ln"/>
    <OMF dec="1"/>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="transc1">ln</csymbol><cn type="real">1</cn></apply></math>
Signatures:
sts
exp
Role:
application
Description:

This symbol represents the exponentiation function as described in Abramowitz and Stegun, section 4.2. It takes one argument.

Commented Mathematical property (CMP):
for all k if k is an integer then e^(z+2*pi*k*i)=e^z
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
  <OMS cd="quant1" name="forall"/>
  <OMBVAR>
    <OMV name="k"/>
  </OMBVAR>
  <OMA>
    <OMS cd="logic1" name="implies"/>
    <OMA>
      <OMS cd="set1" name="in"/>
      <OMV name="k"/>
      <OMS cd="setname1" name="Z"/>
    </OMA>
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS cd="transc1" name="exp"/>
	<OMA>
	  <OMS cd="arith1" name="plus"/>
	  <OMV name="z"/>
	  <OMA>
	    <OMS cd="arith1" name="times"/>
	    <OMI>2</OMI>
	    <OMS cd="nums1" name="pi"/>
	    <OMV name="k"/>
	    <OMS cd="nums1" name="i"/>
	  </OMA>
	</OMA>
      </OMA>
      <OMA>
        <OMS cd="transc1" name="exp"/>
	<OMV name="z"/>
      </OMA>
    </OMA>
  </OMA>
</OMBIND>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>k</ci></bvar>
  <apply><csymbol cd="logic1">implies</csymbol>
   <apply><csymbol cd="set1">in</csymbol><ci>k</ci><csymbol cd="setname1">Z</csymbol></apply>
   <apply><csymbol cd="relation1">eq</csymbol>
    <apply><csymbol cd="transc1">exp</csymbol>
     <apply><csymbol cd="arith1">plus</csymbol>
      <ci>z</ci>
      <apply><csymbol cd="arith1">times</csymbol>
       <cn type="integer">2</cn>
       <csymbol cd="nums1">pi</csymbol>
       <ci>k</ci>
       <csymbol cd="nums1">i</csymbol>
      </apply>
     </apply>
    </apply>
    <apply><csymbol cd="transc1">exp</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
 </bind>
</math>

quant1.forall[$k -> set1.in($k, setname1.Z) ==> exp($z + 2 * nums1.pi * $k * nums1.i) = exp($z)]

∀   k . k ∈ Z ⇒ exp ⁡ ( z + 2 ⁢ π ⁢ k ⁢ i ) = exp ⁡ ( z )

Signatures:
sts
sin
Role:
application
Description:

This symbol represents the sin function as described in Abramowitz and Stegun, section 4.3. It takes one argument.

Commented Mathematical property (CMP):
sin(x) = (exp(ix)-exp(-ix))/2i
Formal Mathematical property (FMP):
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS name="sin" cd="transc1"/>
        <OMV name="x"/>
      </OMA>
      <OMA>
        <OMS name="divide" cd="arith1"/>
        <OMA>
          <OMS name="minus" cd="arith1"/>
          <OMA>
            <OMS name="exp" cd="transc1"/>
            <OMA>
              <OMS name="times" cd="arith1"/>
              <OMS name="i" cd="nums1"/>
              <OMV name="x"/>
            </OMA>
          </OMA>
          <OMA>
            <OMS name="exp" cd="transc1"/>
            <OMA>
              <OMS name="times" cd="arith1"/>
              <OMA>
                <OMS name="unary_minus" cd="arith1"/>
                <OMS name="i" cd="nums1"/>
              </OMA>
              <OMV name="x"/>
            </OMA>
          </OMA>
        </OMA>
        <OMA>
          <OMS name="times" cd="arith1"/>
          <OMI>2</OMI>
          <OMS name="i" cd="nums1"/>
        </OMA>
      </OMA>
    </OMA>
  </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <apply><csymbol cd="arith1">minus</csymbol>
    <apply><csymbol cd="transc1">exp</csymbol>
     <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>x</ci></apply>
    </apply>
    <apply><csymbol cd="transc1">exp</csymbol>
     <apply><csymbol cd="arith1">times</csymbol>
      <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
      <ci>x</ci>
     </apply>
    </apply>
   </apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <cn type="integer">2</cn>
    <csymbol cd="nums1">i</csymbol>
   </apply>
  </apply>
 </apply>
</math>

sin($x) = (exp(nums1.i * $x) - exp( -(nums1.i) * $x)) / (2 * nums1.i)

sin ⁡ ( x ) = exp ⁡ ( i ⁢ x ) - exp ⁡ ( - i ⁢ x ) 2 ⁢ i

Commented Mathematical property (CMP):
sin(A + B) = sin A cos B + cos A sin B
Formal Mathematical property (FMP):
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS cd="transc1" name="sin"/>
        <OMA>
	  <OMS cd="arith1" name="plus"/>
	  <OMV name="A"/>
    	  <OMV name="B"/>
        </OMA>
      </OMA>
      <OMA>
	<OMS cd="arith1" name="plus"/>
	<OMA>
	  <OMS cd="arith1" name="times"/>
	  <OMA>
	    <OMS cd="transc1" name="sin"/>
	    <OMV name="A"/>
	  </OMA>
	  <OMA>
	    <OMS cd="transc1" name="cos"/>
	    <OMV name="B"/>
	  </OMA>
	</OMA>
	<OMA>
	  <OMS cd="arith1" name="times"/>
	  <OMA>
	    <OMS cd="transc1" name="cos"/>
	    <OMV name="A"/>
	  </OMA>
	  <OMA>
	    <OMS cd="transc1" name="sin"/>
	    <OMV name="B"/>
	  </OMA>
	</OMA>
      </OMA>
    </OMA>
  </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">sin</csymbol>
   <apply><csymbol cd="arith1">plus</csymbol><ci>A</ci><ci>B</ci></apply>
  </apply>
  <apply><csymbol cd="arith1">plus</csymbol>
   <apply><csymbol cd="arith1">times</csymbol>
    <apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
    <apply><csymbol cd="transc1">cos</csymbol><ci>B</ci></apply>
   </apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
    <apply><csymbol cd="transc1">sin</csymbol><ci>B</ci></apply>
   </apply>
  </apply>
 </apply>
</math>

sin($A + $B) = sin($A) * cos($B) + cos($A) * sin($B)

sin ⁡ ( A + B ) = sin ⁡ ( A ) ⁢ cos ⁡ ( B ) + cos ⁡ ( A ) ⁢ sin ⁡ ( B )

Commented Mathematical property (CMP):
sin A = - sin(-A)
Formal Mathematical property (FMP):
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS cd="transc1" name="sin"/>
	<OMV name="A"/>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="unary_minus"/>
	<OMA>
	  <OMS cd="transc1" name="sin"/>
	  <OMA>
	    <OMS cd="arith1" name="unary_minus"/>
	    <OMV name="A"/>
	  </OMA>
	</OMA>
      </OMA>
    </OMA>
  </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">unary_minus</csymbol>
   <apply><csymbol cd="transc1">sin</csymbol>
    <apply><csymbol cd="arith1">unary_minus</csymbol><ci>A</ci></apply>
   </apply>
  </apply>
 </apply>
</math>

sin ⁡ ( A ) = - sin ⁡ ( - A )

Signatures:
sts
cos
Role:
application
Description:

This symbol represents the cos function as described in Abramowitz and Stegun, section 4.3. It takes one argument.

Commented Mathematical property (CMP):
cos(x) = (exp(ix)+exp(-ix))/2
Formal Mathematical property (FMP):
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS name="cos" cd="transc1"/>
        <OMV name="x"/>
      </OMA>
      <OMA>
        <OMS name="divide" cd="arith1"/>
        <OMA>
          <OMS name="plus" cd="arith1"/>
          <OMA>
            <OMS name="exp" cd="transc1"/>
            <OMA>
              <OMS name="times" cd="arith1"/>
              <OMS name="i" cd="nums1"/>
              <OMV name="x"/>
            </OMA>
          </OMA>
          <OMA>
            <OMS name="exp" cd="transc1"/>
            <OMA>
              <OMS name="times" cd="arith1"/>
              <OMA>
                <OMS name="unary_minus" cd="arith1"/>
                <OMS name="i" cd="nums1"/>
              </OMA>
              <OMV name="x"/>
            </OMA>
          </OMA>
        </OMA>
        <OMI>2</OMI>
      </OMA>
    </OMA>
  </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">cos</csymbol><ci>x</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <apply><csymbol cd="arith1">plus</csymbol>
    <apply><csymbol cd="transc1">exp</csymbol>
     <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>x</ci></apply>
    </apply>
    <apply><csymbol cd="transc1">exp</csymbol>
     <apply><csymbol cd="arith1">times</csymbol>
      <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
      <ci>x</ci>
     </apply>
    </apply>
   </apply>
   <cn type="integer">2</cn>
  </apply>
 </apply>
</math>

cos($x) = (exp(nums1.i * $x) + exp( -(nums1.i) * $x)) / 2

cos ⁡ ( x ) = exp ⁡ ( i ⁢ x ) + exp ⁡ ( - i ⁢ x ) 2

Commented Mathematical property (CMP):
cos 2A = cos^2 A - sin^2 A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="cos"/>
      <OMA>
        <OMS cd="arith1" name="times"/>
	<OMI> 2 </OMI>
	<OMV name="A"/>
      </OMA>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="minus"/>
      <OMA>
        <OMS cd="arith1" name="power"/>
	<OMA>
	  <OMS cd="transc1" name="cos"/>
	  <OMV name="A"/>
	</OMA>
	<OMI> 2 </OMI>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="power"/>
	<OMA>
	  <OMS cd="transc1" name="sin"/>
	  <OMV name="A"/>
	</OMA>
	<OMI> 2 </OMI>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">cos</csymbol>
   <apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>A</ci></apply>
  </apply>
  <apply><csymbol cd="arith1">minus</csymbol>
   <apply><csymbol cd="arith1">power</csymbol>
    <apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
    <cn type="integer">2</cn>
   </apply>
   <apply><csymbol cd="arith1">power</csymbol>
    <apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
    <cn type="integer">2</cn>
   </apply>
  </apply>
 </apply>
</math>

cos(2 * $A) = cos($A) ^ 2 - sin($A) ^ 2

cos ⁡ ( 2 ⁢ A ) = cos ⁡ ( A ) 2 - sin ⁡ ( A ) 2

Commented Mathematical property (CMP):
cos A = cos(-A)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="cos"/>
      <OMV name="A"/>
    </OMA>
    <OMA>
      <OMS cd="transc1" name="cos"/>
      <OMA>
        <OMS cd="arith1" name="unary_minus"/>
	<OMV name="A"/>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="transc1">cos</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

cos ⁡ ( A ) = cos ⁡ ( - A )

Signatures:
sts
tan
Role:
application
Description:

This symbol represents the tan function as described in Abramowitz and Stegun, section 4.3. It takes one argument.

Commented Mathematical property (CMP):
tan A = sin A / cos A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="tan"/>
    <OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="divide"/>
    <OMA>
      <OMS cd="transc1" name="sin"/>
      <OMV name="A"/>
    </OMA>
    <OMA>
      <OMS cd="transc1" name="cos"/>
      <OMV name="A"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">tan</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
   <apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

tan($A) = sin($A) / cos($A)

tan ⁡ ( A ) = sin ⁡ ( A ) cos ⁡ ( A )

Signatures:
sts
sec
Role:
application
Description:

This symbol represents the sec function as described in Abramowitz and Stegun, section 4.3. It takes one argument.

Commented Mathematical property (CMP):
sec A = 1/cos A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="sec"/><OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="divide"/>
    <OMS cd="alg1" name="one"/>
    <OMA>
      <OMS cd="transc1" name="cos"/>
      <OMV name="A"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">sec</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <csymbol cd="alg1">one</csymbol>
   <apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

sec($A) = alg1.one / cos($A)

sec ⁡ ( A ) = 1 cos ⁡ ( A )

Signatures:
sts
csc
Role:
application
Description:

This symbol represents the csc function as described in Abramowitz and Stegun, section 4.3. It takes one argument.

Commented Mathematical property (CMP):
csc A = 1/sin A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="csc"/><OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="divide"/>
    <OMS cd="alg1" name="one"/>
    <OMA>
      <OMS cd="transc1" name="sin"/>
      <OMV name="A"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">csc</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <csymbol cd="alg1">one</csymbol>
   <apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

csc($A) = alg1.one / sin($A)

csc ⁡ ( A ) = 1 sin ⁡ ( A )

Signatures:
sts
cot
Role:
application
Description:

This symbol represents the cot function as described in Abramowitz and Stegun, section 4.3. It takes one argument.

Commented Mathematical property (CMP):
cot A = 1/tan A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="cot"/><OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="divide"/>
    <OMS cd="alg1" name="one"/>
    <OMA>
      <OMS cd="transc1" name="tan"/>
      <OMV name="A"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">cot</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <csymbol cd="alg1">one</csymbol>
   <apply><csymbol cd="transc1">tan</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

cot($A) = alg1.one / tan($A)

cot ⁡ ( A ) = 1 tan ⁡ ( A )

Signatures:
sts
sinh
Role:
application
Description:

This symbol represents the sinh function as described in Abramowitz and Stegun, section 4.5. It takes one argument.

Commented Mathematical property (CMP):
sinh A = 1/2 * (e^A - e^(-A))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="sinh"/>
    <OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="times"/>
    <OMA>
      <OMS cd="nums1" name="rational"/>
      <OMS cd="alg1" name="one"/>
      <OMI> 2 </OMI>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="minus"/>
      <OMA>
        <OMS cd="arith1" name="power"/>
	<OMS cd="nums1" name="e"/>
	<OMV name="A"/>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="power"/>
	<OMS cd="nums1" name="e"/>
	<OMA>
	  <OMS cd="arith1" name="unary_minus"/>
	  <OMV name="A"/>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">sinh</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="nums1">rational</csymbol>
    <csymbol cd="alg1">one</csymbol>
    <cn type="integer">2</cn>
   </apply>
   <apply><csymbol cd="arith1">minus</csymbol>
    <apply><csymbol cd="arith1">power</csymbol><csymbol cd="nums1">e</csymbol><ci>A</ci></apply>
    <apply><csymbol cd="arith1">power</csymbol>
     <csymbol cd="nums1">e</csymbol>
     <apply><csymbol cd="arith1">unary_minus</csymbol><ci>A</ci></apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

sinh($A) = alg1.one // 2 * (nums1.e ^ $A - nums1.e ^ -($A))

sinh ⁡ ( A ) = 1 2 ⁢ ( e A - e - A )

Signatures:
sts
cosh
Role:
application
Description:

This symbol represents the cosh function as described in Abramowitz and Stegun, section 4.5. It takes one argument.

Commented Mathematical property (CMP):
cosh A = 1/2 * (e^A + e^(-A))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="cosh"/>
    <OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="times"/>
    <OMA>
      <OMS cd="nums1" name="rational"/>
      <OMS cd="alg1" name="one"/>
      <OMI> 2 </OMI>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="plus"/>
      <OMA>
        <OMS cd="arith1" name="power"/>
	<OMS cd="nums1" name="e"/>
	<OMV name="A"/>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="power"/>
	<OMS cd="nums1" name="e"/>
	<OMA>
	  <OMS cd="arith1" name="unary_minus"/>
	  <OMV name="A"/>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">cosh</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="nums1">rational</csymbol>
    <csymbol cd="alg1">one</csymbol>
    <cn type="integer">2</cn>
   </apply>
   <apply><csymbol cd="arith1">plus</csymbol>
    <apply><csymbol cd="arith1">power</csymbol><csymbol cd="nums1">e</csymbol><ci>A</ci></apply>
    <apply><csymbol cd="arith1">power</csymbol>
     <csymbol cd="nums1">e</csymbol>
     <apply><csymbol cd="arith1">unary_minus</csymbol><ci>A</ci></apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

cosh($A) = alg1.one // 2 * (nums1.e ^ $A + nums1.e ^ -($A))

cosh ⁡ ( A ) = 1 2 ⁢ ( e A + e - A )

Signatures:
sts
tanh
Role:
application
Description:

This symbol represents the tanh function as described in Abramowitz and Stegun, section 4.5. It takes one argument.

Commented Mathematical property (CMP):
tanh A = sinh A / cosh A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="tanh"/>
    <OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="divide"/>
    <OMA>
      <OMS cd="transc1" name="sinh"/>
      <OMV name="A"/>
    </OMA>
    <OMA>
      <OMS cd="transc1" name="cosh"/>
      <OMV name="A"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">tanh</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <apply><csymbol cd="transc1">sinh</csymbol><ci>A</ci></apply>
   <apply><csymbol cd="transc1">cosh</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

tanh($A) = sinh($A) / cosh($A)

tanh ⁡ ( A ) = sinh ⁡ ( A ) cosh ⁡ ( A )

Signatures:
sts
sech
Role:
application
Description:

This symbol represents the sech function as described in Abramowitz and Stegun, section 4.5. It takes one argument.

Commented Mathematical property (CMP):
sech A = 1/cosh A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="sech"/><OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="divide"/>
    <OMS cd="alg1" name="one"/>
    <OMA>
      <OMS cd="transc1" name="cosh"/>
      <OMV name="A"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">sech</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <csymbol cd="alg1">one</csymbol>
   <apply><csymbol cd="transc1">cosh</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

sech($A) = alg1.one / cosh($A)

sech ⁡ ( A ) = 1 cosh ⁡ ( A )

Signatures:
sts
csch
Role:
application
Description:

This symbol represents the csch function as described in Abramowitz and Stegun, section 4.5. It takes one argument.

Commented Mathematical property (CMP):
csch A = 1/sinh A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="csch"/><OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="divide"/>
    <OMS cd="alg1" name="one"/>
    <OMA>
      <OMS cd="transc1" name="sinh"/>
      <OMV name="A"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">csch</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <csymbol cd="alg1">one</csymbol>
   <apply><csymbol cd="transc1">sinh</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

csch($A) = alg1.one / sinh($A)

csch ⁡ ( A ) = 1 sinh ⁡ ( A )

Signatures:
sts
coth
Role:
application
Description:

This symbol represents the coth function as described in Abramowitz and Stegun, section 4.5. It takes one argument.

Commented Mathematical property (CMP):
coth A = 1/tanh A
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="coth"/><OMV name="A"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="divide"/>
    <OMS cd="alg1" name="one"/>
    <OMA>
      <OMS cd="transc1" name="tanh"/>
      <OMV name="A"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">coth</csymbol><ci>A</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <csymbol cd="alg1">one</csymbol>
   <apply><csymbol cd="transc1">tanh</csymbol><ci>A</ci></apply>
  </apply>
 </apply>
</math>

coth($A) = alg1.one / tanh($A)

coth ⁡ ( A ) = 1 tanh ⁡ ( A )

Signatures:
sts
arcsin
Role:
application
Description:

This symbol represents the arcsin function. This is the inverse of the sin function as described in Abramowitz and Stegun, section 4.4. It takes one argument.

Commented Mathematical property (CMP):
arcsin(z) = -i ln (sqrt(1-z^2)+iz)
Formal Mathematical property (FMP):
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS name="eq" cd="relation1"/>
      <OMA>
        <OMS name="arcsin" cd="transc1"/>
        <OMV name="z"/>
      </OMA>
      <OMA>
        <OMS name="times" cd="arith1"/>
        <OMA>
          <OMS name="unary_minus" cd="arith1"/>
          <OMS name="i" cd="nums1"/>
        </OMA>
        <OMA>
          <OMS name="ln" cd="transc1"/>
          <OMA>
            <OMS name="plus" cd="arith1"/>
            <OMA>
              <OMS name="root" cd="arith1"/>
              <OMA>
                <OMS name="minus" cd="arith1"/>
                <OMS name="one" cd="alg1"/>
                <OMA>
                  <OMS name="power" cd="arith1"/>
                  <OMV name="z"/>
                  <OMI> 2 </OMI>
                </OMA>
              </OMA>
              <OMI> 2 </OMI>
            </OMA>
            <OMA>
              <OMS name="times" cd="arith1"/>
              <OMS name="i" cd="nums1"/>
              <OMV name="z"/>
            </OMA>
          </OMA>
        </OMA>
      </OMA>
    </OMA>
  </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arcsin</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
   <apply><csymbol cd="transc1">ln</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol>
     <apply><csymbol cd="arith1">root</csymbol>
      <apply><csymbol cd="arith1">minus</csymbol>
       <csymbol cd="alg1">one</csymbol>
       <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
      </apply>
      <cn type="integer">2</cn>
     </apply>
     <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arcsin($z) = -(nums1.i) * ln(arith1.root(alg1.one - $z ^ 2, 2) + nums1.i * $z)

arcsin ⁡ ( z ) = - i ⁢ ln ⁡ ( 1 - z 2 + i ⁢ z )

Commented Mathematical property (CMP):
x in [-(pi/2),(pi/2)] implies arcsin(sin x) = x
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="logic1" name="implies"/>
  <OMA>
    <OMS cd="set1" name="in"/>
    <OMV name="x"/>
    <OMA>
      <OMS cd="interval1" name="interval_cc"/>
      <OMA>
        <OMS cd="arith1" name="unary_minus"/>
	<OMA>
	  <OMS cd="arith1" name="divide"/>
	  <OMS cd="nums1" name="pi"/>
	  <OMI> 2 </OMI>
	</OMA>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="divide"/>
	<OMS cd="nums1" name="pi"/>
	<OMI> 2 </OMI>
      </OMA>
    </OMA>
  </OMA>
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arcsin"/>
      <OMA>
        <OMS cd="transc1" name="sin"/>
	<OMV name="x"/>
      </OMA>
    </OMA>
    <OMV name="x"/>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">implies</csymbol>
  <apply><csymbol cd="set1">in</csymbol>
   <ci>x</ci>
   <apply><csymbol cd="interval1">interval_cc</csymbol>
    <apply><csymbol cd="arith1">unary_minus</csymbol>
     <apply><csymbol cd="arith1">divide</csymbol>
      <csymbol cd="nums1">pi</csymbol>
      <cn type="integer">2</cn>
     </apply>
    </apply>
    <apply><csymbol cd="arith1">divide</csymbol>
     <csymbol cd="nums1">pi</csymbol>
     <cn type="integer">2</cn>
    </apply>
   </apply>
  </apply>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply><csymbol cd="transc1">arcsin</csymbol>
    <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
   </apply>
   <ci>x</ci>
  </apply>
 </apply>
</math>

set1.in($x, interval1.interval_cc( -(nums1.pi / 2), nums1.pi / 2)) ==> arcsin(sin($x)) = $x

x ∈ [ - π 2 , π 2 ] ⇒ arcsin ⁡ ( sin ⁡ ( x ) ) = x

Signatures:
sts
arccos
Role:
application
Description:

This symbol represents the arccos function. This is the inverse of the cos function as described in Abramowitz and Stegun, section 4.4. It takes one argument.

Commented Mathematical property (CMP):
arccos(z) = -i ln(z+i \sqrt(1-z^2))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arccos"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="times"/>
      <OMA>
        <OMS cd="arith1" name="unary_minus"/>
	<OMS cd="nums1" name="i"/>
      </OMA>
      <OMA>
        <OMS cd="transc1" name="ln"/>
	<OMA>
	  <OMS cd="arith1" name="plus"/>
	  <OMV name="z"/>
	  <OMA>
	    <OMS cd="arith1" name="times"/>
	    <OMS cd="nums1" name="i"/>
	    <OMA>
	      <OMS cd="arith1" name="root"/>
	      <OMA>
	        <OMS cd="arith1" name="minus"/>
		<OMS cd="alg1" name="one"/>
		<OMA>
		  <OMS cd="arith1" name="power"/>
		  <OMV name="z"/>
		  <OMI> 2 </OMI>
		</OMA>
	      </OMA>
	      <OMI> 2 </OMI>
	    </OMA>
	  </OMA>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccos</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
   <apply><csymbol cd="transc1">ln</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol>
     <ci>z</ci>
     <apply><csymbol cd="arith1">times</csymbol>
      <csymbol cd="nums1">i</csymbol>
      <apply><csymbol cd="arith1">root</csymbol>
       <apply><csymbol cd="arith1">minus</csymbol>
        <csymbol cd="alg1">one</csymbol>
        <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
       </apply>
       <cn type="integer">2</cn>
      </apply>
     </apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arccos($z) = -(nums1.i) * ln($z + nums1.i * arith1.root(alg1.one - $z ^ 2, 2))

arccos ⁡ ( z ) = - i ⁢ ln ⁡ ( z + i ⁢ 1 - z 2 )

Commented Mathematical property (CMP):
x in [0,pi] implies arccos(cos x) = x
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="logic1" name="implies"/>
  <OMA>
    <OMS cd="set1" name="in"/>
    <OMV name="x"/>
    <OMA>
      <OMS cd="interval1" name="interval_cc"/>
      <OMS cd="alg1" name="zero"/>
      <OMS cd="nums1" name="pi"/>
    </OMA>
  </OMA>
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arccos"/>
      <OMA>
        <OMS cd="transc1" name="cos"/>
	<OMV name="x"/>
      </OMA>
    </OMA>
    <OMV name="x"/>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">implies</csymbol>
  <apply><csymbol cd="set1">in</csymbol>
   <ci>x</ci>
   <apply><csymbol cd="interval1">interval_cc</csymbol>
    <csymbol cd="alg1">zero</csymbol>
    <csymbol cd="nums1">pi</csymbol>
   </apply>
  </apply>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply><csymbol cd="transc1">arccos</csymbol>
    <apply><csymbol cd="transc1">cos</csymbol><ci>x</ci></apply>
   </apply>
   <ci>x</ci>
  </apply>
 </apply>
</math>

set1.in($x, interval1.interval_cc(alg1.zero, nums1.pi)) ==> arccos(cos($x)) = $x

x ∈ [ 0 , π ] ⇒ arccos ⁡ ( cos ⁡ ( x ) ) = x

Signatures:
sts
arctan
Role:
application
Description:

This symbol represents the arctan function. This is the inverse of the tan function as described in Abramowitz and Stegun, section 4.4. It takes one argument.

Commented Mathematical property (CMP):
arctan(z) = (i/2)ln((1-iz)/(1+iz))
Formal Mathematical property (FMP):
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS name="eq" cd="relation1"/>
      <OMA>
        <OMS name="arctan" cd="transc1"/>
        <OMV name="z"/>
      </OMA>
      <OMA>
        <OMS name="times" cd="arith1"/>
        <OMA>
          <OMS name="divide" cd="arith1"/>
          <OMS name="i" cd="nums1"/>
          <OMI> 2 </OMI>
        </OMA>
        <OMA>
          <OMS name="ln" cd="transc1"/>
	  <OMA>
            <OMS name="divide" cd="arith1"/>
            <OMA>
              <OMS name="minus" cd="arith1"/>
              <OMS name="one" cd="alg1"/>
              <OMA>
                <OMS name="times" cd="arith1"/>
                <OMS name="i" cd="nums1"/>
                <OMV name="z"/>
              </OMA>
            </OMA>
            <OMA>
              <OMS name="plus" cd="arith1"/>
              <OMS name="one" cd="alg1"/>
              <OMA>
                <OMS name="times" cd="arith1"/>
                <OMS name="i" cd="nums1"/>
                <OMV name="z"/>
              </OMA>
            </OMA>
          </OMA>
        </OMA>
      </OMA>
    </OMA>
  </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arctan</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">divide</csymbol>
    <csymbol cd="nums1">i</csymbol>
    <cn type="integer">2</cn>
   </apply>
   <apply><csymbol cd="transc1">ln</csymbol>
    <apply><csymbol cd="arith1">divide</csymbol>
     <apply><csymbol cd="arith1">minus</csymbol>
      <csymbol cd="alg1">one</csymbol>
      <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
     </apply>
     <apply><csymbol cd="arith1">plus</csymbol>
      <csymbol cd="alg1">one</csymbol>
      <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
     </apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arctan($z) = nums1.i / 2 * ln((alg1.one - nums1.i * $z) / (alg1.one + nums1.i * $z))

arctan ⁡ ( z ) = i 2 ⁢ ln ⁡ ( 1 - i ⁢ z 1 + i ⁢ z )

Commented Mathematical property (CMP):
x in (-(pi/2),(pi/2)) implies arctan(tan x) = x
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="logic1" name="implies"/>
  <OMA>
    <OMS cd="set1" name="in"/>
    <OMV name="x"/>
    <OMA>
      <OMS cd="interval1" name="interval_oo"/>
      <OMA>
        <OMS cd="arith1" name="unary_minus"/>
	<OMA>
	  <OMS cd="arith1" name="divide"/>
	  <OMS cd="nums1" name="pi"/>
	  <OMI> 2 </OMI>
	</OMA>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="divide"/>
	<OMS cd="nums1" name="pi"/>
	<OMI> 2 </OMI>
      </OMA>
    </OMA>
  </OMA>
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arctan"/>
      <OMA>
        <OMS cd="transc1" name="tan"/>
	<OMV name="x"/>
      </OMA>
    </OMA>
    <OMV name="x"/>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">implies</csymbol>
  <apply><csymbol cd="set1">in</csymbol>
   <ci>x</ci>
   <apply><csymbol cd="interval1">interval_oo</csymbol>
    <apply><csymbol cd="arith1">unary_minus</csymbol>
     <apply><csymbol cd="arith1">divide</csymbol>
      <csymbol cd="nums1">pi</csymbol>
      <cn type="integer">2</cn>
     </apply>
    </apply>
    <apply><csymbol cd="arith1">divide</csymbol>
     <csymbol cd="nums1">pi</csymbol>
     <cn type="integer">2</cn>
    </apply>
   </apply>
  </apply>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply><csymbol cd="transc1">arctan</csymbol>
    <apply><csymbol cd="transc1">tan</csymbol><ci>x</ci></apply>
   </apply>
   <ci>x</ci>
  </apply>
 </apply>
</math>

set1.in($x, interval1.interval_oo( -(nums1.pi / 2), nums1.pi / 2)) ==> arctan(tan($x)) = $x

x ∈ ( - π 2 , π 2 ) ⇒ arctan ⁡ ( tan ⁡ ( x ) ) = x

Signatures:
sts
arcsec
Role:
application
Description:

This symbol represents the arcsec function as described in Abramowitz and Stegun, section 4.4.

Commented Mathematical property (CMP):
arcsec(z) = -i ln(1/z + i \sqrt(1-1/z^2))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arcsec"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="times"/>
      <OMA>
        <OMS cd="arith1" name="unary_minus"/>
	<OMS cd="nums1" name="i"/>
      </OMA>
      <OMA>
        <OMS cd="transc1" name="ln"/>
	<OMA>
	  <OMS cd="arith1" name="plus"/>
	  <OMA>
	    <OMS cd="arith1" name="divide"/>
	    <OMS cd="alg1" name="one"/>
	    <OMV name="z"/>
	  </OMA>
	  <OMA>
	    <OMS cd="arith1" name="times"/>
	    <OMS cd="nums1" name="i"/>
	    <OMA>
	      <OMS cd="arith1" name="root"/>
	      <OMA>
	        <OMS cd="arith1" name="minus"/>
		<OMS cd="alg1" name="one"/>
		<OMA>
		  <OMS cd="arith1" name="divide"/>
		  <OMS cd="alg1" name="one"/>
		  <OMA>
		    <OMS cd="arith1" name="power"/>
		    <OMV name="z"/>
		    <OMI> 2 </OMI>
		  </OMA>
		</OMA>
	      </OMA>
	      <OMI> 2 </OMI>
	    </OMA>
	  </OMA>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arcsec</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
   <apply><csymbol cd="transc1">ln</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol>
     <apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
     <apply><csymbol cd="arith1">times</csymbol>
      <csymbol cd="nums1">i</csymbol>
      <apply><csymbol cd="arith1">root</csymbol>
       <apply><csymbol cd="arith1">minus</csymbol>
        <csymbol cd="alg1">one</csymbol>
        <apply><csymbol cd="arith1">divide</csymbol>
         <csymbol cd="alg1">one</csymbol>
         <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
        </apply>
       </apply>
       <cn type="integer">2</cn>
      </apply>
     </apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arcsec($z) = -(nums1.i) * ln(alg1.one / $z + nums1.i * arith1.root(alg1.one - alg1.one / $z ^ 2, 2))

arcsec ⁡ ( z ) = - i ⁢ ln ⁡ ( 1 z + i ⁢ 1 - 1 z 2 )

Commented Mathematical property (CMP):
for all z | arcsec z = i * arcsech z
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
  <OMS cd="quant1" name="forall"/>
  <OMBVAR>
    <OMV name="z"/>
  </OMBVAR>
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arcsec"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="times"/>
      <OMS cd="nums1" name="i"/>
      <OMA>
        <OMS cd="transc1" name="arcsech"/>
	<OMV name="z"/>
      </OMA>
    </OMA>
  </OMA>
</OMBIND>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>z</ci></bvar>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply><csymbol cd="transc1">arcsec</csymbol><ci>z</ci></apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <csymbol cd="nums1">i</csymbol>
    <apply><csymbol cd="transc1">arcsech</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
 </bind>
</math>

quant1.forall[$z -> arcsec($z) = nums1.i * arcsech($z)]

∀   z . arcsec ⁡ ( z ) = i ⁢ arcsech ⁡ ( z )

Signatures:
sts
arccsc
Role:
application
Description:

This symbol represents the arccsc function as described in Abramowitz and Stegun, section 4.4.

Commented Mathematical property (CMP):
arccsc(z) = -i ln(i/z + \sqrt(1 - 1/z^2))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arccsc"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="times"/>
      <OMA>
        <OMS cd="arith1" name="unary_minus"/>
	<OMS cd="nums1" name="i"/>
      </OMA>
      <OMA>
        <OMS cd="transc1" name="ln"/>
	<OMA>
	  <OMS cd="arith1" name="plus"/>
	  <OMA>
	    <OMS cd="arith1" name="divide"/>
	    <OMS cd="nums1" name="i"/>
	    <OMV name="z"/>
	  </OMA>
	  <OMA>
	    <OMS cd="arith1" name="root"/>
	    <OMA>
	      <OMS cd="arith1" name="minus"/>
	      <OMS cd="alg1" name="one"/>
	      <OMA>
		<OMS cd="arith1" name="divide"/>
		<OMS cd="alg1" name="one"/>
		<OMA>
		  <OMS cd="arith1" name="power"/>
		  <OMV name="z"/>
		  <OMI> 2 </OMI>
		</OMA>
	      </OMA>
	    </OMA>
	    <OMI> 2 </OMI>
	  </OMA>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccsc</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
   <apply><csymbol cd="transc1">ln</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol>
     <apply><csymbol cd="arith1">divide</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
     <apply><csymbol cd="arith1">root</csymbol>
      <apply><csymbol cd="arith1">minus</csymbol>
       <csymbol cd="alg1">one</csymbol>
       <apply><csymbol cd="arith1">divide</csymbol>
        <csymbol cd="alg1">one</csymbol>
        <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
       </apply>
      </apply>
      <cn type="integer">2</cn>
     </apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arccsc($z) = -(nums1.i) * ln(nums1.i / $z + arith1.root(alg1.one - alg1.one / $z ^ 2, 2))

arccsc ⁡ ( z ) = - i ⁢ ln ⁡ ( i z + 1 - 1 z 2 )

Commented Mathematical property (CMP):
arccsc(z) = i * arccsch(i * z)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="arccsc"/>
    <OMV name="z"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="times"/>
    <OMS cd="nums1" name="i"/>
    <OMA>
      <OMS cd="transc1" name="arccsch"/>
      <OMA>
        <OMS cd="arith1" name="times"/>
        <OMS cd="nums1" name="i"/>
	<OMV name="z"/>
      </OMA>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccsc</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <csymbol cd="nums1">i</csymbol>
   <apply><csymbol cd="transc1">arccsch</csymbol>
    <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
 </apply>
</math>

arccsc($z) = nums1.i * arccsch(nums1.i * $z)

arccsc ⁡ ( z ) = i ⁢ arccsch ⁡ ( i ⁢ z )

Commented Mathematical property (CMP):
arccsc(-z) = - arccsc(z)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="arccsc"/>
    <OMA>
      <OMS cd="arith1" name="unary_minus"/>
      <OMV name="z"/>
    </OMA>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="unary_minus"/>
    <OMA>
      <OMS cd="transc1" name="arccsc"/>
      <OMV name="z"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccsc</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><ci>z</ci></apply>
  </apply>
  <apply><csymbol cd="arith1">unary_minus</csymbol>
   <apply><csymbol cd="transc1">arccsc</csymbol><ci>z</ci></apply>
  </apply>
 </apply>
</math>

arccsc( -($z)) = -(arccsc($z))

arccsc ⁡ ( - z ) = - arccsc ⁡ ( z )

Signatures:
sts
arccot
Role:
application
Description:

This symbol represents the arccot function as described in Abramowitz and Stegun, section 4.4.

Commented Mathematical property (CMP):
arccot(-z) = - arccot(z)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="arccot"/>
    <OMA>
      <OMS cd="arith1" name="unary_minus"/>
      <OMV name="z"/>
    </OMA>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="unary_minus"/>
    <OMA>
      <OMS cd="transc1" name="arccot"/>
      <OMV name="z"/>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccot</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><ci>z</ci></apply>
  </apply>
  <apply><csymbol cd="arith1">unary_minus</csymbol>
   <apply><csymbol cd="transc1">arccot</csymbol><ci>z</ci></apply>
  </apply>
 </apply>
</math>

arccot( -($z)) = -(arccot($z))

arccot ⁡ ( - z ) = - arccot ⁡ ( z )

Commented Mathematical property (CMP):
arccot(x) = (i/2) * ln ((x - i)/(x + i))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arccot"/>
      <OMV name="x"/>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="times"/>
      <OMA>
        <OMS cd="arith1" name="divide"/>
	<OMS cd="nums1" name="i"/>
	<OMI> 2 </OMI>
      </OMA>
      <OMA>
        <OMS cd="transc1" name="ln"/>
        <OMA>
          <OMS cd="arith1" name="divide"/>
	  <OMA>
	    <OMS cd="arith1" name="minus"/>
	    <OMV name="x"/>
	    <OMS cd="nums1" name="i"/>
	  </OMA>
	  <OMA>
	    <OMS cd="arith1" name="plus"/>
	    <OMV name="x"/>
	    <OMS cd="nums1" name="i"/>
	  </OMA>
        </OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccot</csymbol><ci>x</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">divide</csymbol>
    <csymbol cd="nums1">i</csymbol>
    <cn type="integer">2</cn>
   </apply>
   <apply><csymbol cd="transc1">ln</csymbol>
    <apply><csymbol cd="arith1">divide</csymbol>
     <apply><csymbol cd="arith1">minus</csymbol><ci>x</ci><csymbol cd="nums1">i</csymbol></apply>
     <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><csymbol cd="nums1">i</csymbol></apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arccot($x) = nums1.i / 2 * ln(($x - nums1.i) / ($x + nums1.i))

arccot ⁡ ( x ) = i 2 ⁢ ln ⁡ ( x - i x + i )

Signatures:
sts
arcsinh
Role:
application
Description:

This symbol represents the arcsinh function as described in Abramowitz and Stegun, section 4.6.

Commented Mathematical property (CMP):
arcsinh z = ln(z + \sqrt(1+z^2))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arcsinh"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="transc1" name="ln"/>
      <OMA>
        <OMS cd="arith1" name="plus"/>
	<OMV name="z"/>
	<OMA>
	  <OMS cd="arith1" name="root"/>
	  <OMA>
	    <OMS cd="arith1" name="plus"/>
	    <OMS cd="alg1" name="one"/>
	    <OMA>
	      <OMS cd="arith1" name="power"/>
	      <OMV name="z"/>
	      <OMI> 2 </OMI>
	    </OMA>
	  </OMA>
	  <OMI> 2 </OMI>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arcsinh</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="transc1">ln</csymbol>
   <apply><csymbol cd="arith1">plus</csymbol>
    <ci>z</ci>
    <apply><csymbol cd="arith1">root</csymbol>
     <apply><csymbol cd="arith1">plus</csymbol>
      <csymbol cd="alg1">one</csymbol>
      <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
     </apply>
     <cn type="integer">2</cn>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arcsinh($z) = ln($z + arith1.root(alg1.one + $z ^ 2, 2))

arcsinh ⁡ ( z ) = ln ⁡ ( z + 1 + z 2 )

Commented Mathematical property (CMP):
arcsinh(z) = - i * arcsin(i * z)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="arcsinh"/>
    <OMV name="z"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="times"/>
    <OMA>
      <OMS cd="arith1" name="unary_minus"/>
      <OMS cd="nums1" name="i"/>
    </OMA>
    <OMA>
      <OMS cd="transc1" name="arcsin"/>
      <OMA>
        <OMS cd="arith1" name="times"/>
	<OMS cd="nums1" name="i"/>
	<OMV name="z"/>
      </OMA>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arcsinh</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
   <apply><csymbol cd="transc1">arcsin</csymbol>
    <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
 </apply>
</math>

arcsinh($z) = -(nums1.i) * arcsin(nums1.i * $z)

arcsinh ⁡ ( z ) = - i ⁢ arcsin ⁡ ( i ⁢ z )

Signatures:
sts
arccosh
Role:
application
Description:

This symbol represents the arccosh function as described in Abramowitz and Stegun, section 4.6.

Commented Mathematical property (CMP):
arccosh(z) = 2*ln(\sqrt((z+1)/2) + \sqrt((z-1)/2))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arccosh"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="times"/>
      <OMI> 2 </OMI>
      <OMA>
        <OMS cd="transc1" name="ln"/>
	<OMA>
	  <OMS cd="arith1" name="plus"/>
	  <OMA>
	    <OMS cd="arith1" name="root"/>
	    <OMA>
	      <OMS cd="arith1" name="divide"/>
	      <OMA>
	        <OMS cd="arith1" name="plus"/>
		<OMV name="z"/>
		<OMS cd="alg1" name="one"/>
	      </OMA>
	      <OMI> 2 </OMI>
	    </OMA>
	    <OMI> 2 </OMI>
	  </OMA>
	  <OMA>
	    <OMS cd="arith1" name="root"/>
	    <OMA>
	      <OMS cd="arith1" name="divide"/>
	      <OMA>
	        <OMS cd="arith1" name="minus"/>
		<OMV name="z"/>
		<OMS cd="alg1" name="one"/>
	      </OMA>
	      <OMI> 2 </OMI>
	    </OMA>
	    <OMI> 2 </OMI>
	  </OMA>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccosh</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <cn type="integer">2</cn>
   <apply><csymbol cd="transc1">ln</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol>
     <apply><csymbol cd="arith1">root</csymbol>
      <apply><csymbol cd="arith1">divide</csymbol>
       <apply><csymbol cd="arith1">plus</csymbol><ci>z</ci><csymbol cd="alg1">one</csymbol></apply>
       <cn type="integer">2</cn>
      </apply>
      <cn type="integer">2</cn>
     </apply>
     <apply><csymbol cd="arith1">root</csymbol>
      <apply><csymbol cd="arith1">divide</csymbol>
       <apply><csymbol cd="arith1">minus</csymbol><ci>z</ci><csymbol cd="alg1">one</csymbol></apply>
       <cn type="integer">2</cn>
      </apply>
      <cn type="integer">2</cn>
     </apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arccosh($z) = 2 * ln(arith1.root(($z + alg1.one) / 2, 2) + arith1.root(($z - alg1.one) / 2, 2))

arccosh ⁡ ( z ) = 2 ⁢ ln ⁡ ( z + 1 2 + z - 1 2 )

Commented Mathematical property (CMP):
arccosh z = i * (pi - arccos z)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="arccosh"/>
    <OMV name="z"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="times"/>
    <OMS cd="nums1" name="i"/>
    <OMA>
      <OMS cd="arith1" name="minus"/>
      <OMS cd="nums1" name="pi"/>
      <OMA>
	<OMS cd="transc1" name="arccos"/>
	<OMV name="z"/>
      </OMA>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccosh</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <csymbol cd="nums1">i</csymbol>
   <apply><csymbol cd="arith1">minus</csymbol>
    <csymbol cd="nums1">pi</csymbol>
    <apply><csymbol cd="transc1">arccos</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
 </apply>
</math>

arccosh($z) = nums1.i * (nums1.pi - arccos($z))

arccosh ⁡ ( z ) = i ⁢ ( π - arccos ⁡ ( z ) )

Signatures:
sts
arctanh
Role:
application
Description:

This symbol represents the arctanh function as described in Abramowitz and Stegun, section 4.6.

Commented Mathematical property (CMP):
arctanh(z) = - i * arctan(i * z)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="arctanh"/>
    <OMV name="z"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="times"/>
    <OMA>
      <OMS cd="arith1" name="unary_minus"/>
	<OMS cd="nums1" name="i"/>
    </OMA>
    <OMA>
      <OMS cd="transc1" name="arctan"/>
      <OMA>
        <OMS cd="arith1" name="times"/>
	<OMS cd="nums1" name="i"/>
	<OMV name="z"/>
      </OMA>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arctanh</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
   <apply><csymbol cd="transc1">arctan</csymbol>
    <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
 </apply>
</math>

arctanh($z) = -(nums1.i) * arctan(nums1.i * $z)

arctanh ⁡ ( z ) = - i ⁢ arctan ⁡ ( i ⁢ z )

Commented Mathematical property (CMP):
for all x where 0 <= x^2 < 1 | arctanh(x) = 1/2 * ln((1 + x)/(1 - x))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
  <OMS cd="quant1" name="forall"/>
  <OMBVAR>
    <OMV name="x"/>
  </OMBVAR>
  <OMA>
    <OMS cd="logic1" name="implies"/>
    <OMA>
      <OMS cd="logic1" name="and"/>
      <OMA>
        <OMS cd="relation1" name="leq"/>
	<OMS cd="alg1" name="zero"/>
	<OMA>
	  <OMS cd="arith1" name="power"/>
	  <OMV name="x"/>
	  <OMI> 2 </OMI>
	</OMA>
      </OMA>
      <OMA>
        <OMS cd="relation1" name="lt"/>
	<OMA>
	  <OMS cd="arith1" name="power"/>
	  <OMV name="x"/>
	  <OMI> 2 </OMI>
	</OMA>
	<OMS cd="alg1" name="one"/>
      </OMA>
    </OMA>
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS cd="transc1" name="arctanh"/>
	<OMV name="x"/>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="times"/>
        <OMA>
          <OMS cd="nums1" name="rational"/>
          <OMI> 1 </OMI>
          <OMI> 2 </OMI>
        </OMA>
        <OMA>
          <OMS cd="transc1" name="ln"/>
          <OMA>
            <OMS cd="arith1" name="divide"/>
	    <OMA>
	      <OMS cd="arith1" name="plus"/>
	      <OMV name="x"/>
	      <OMS cd="alg1" name="one"/>
	    </OMA>
	    <OMA>
	      <OMS cd="arith1" name="minus"/>
	      <OMS cd="alg1" name="one"/>
	      <OMV name="x"/>
	    </OMA>
          </OMA>
        </OMA>
      </OMA>
    </OMA>
  </OMA>
</OMBIND>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">implies</csymbol>
   <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="relation1">leq</csymbol>
     <csymbol cd="alg1">zero</csymbol>
     <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
    </apply>
    <apply><csymbol cd="relation1">lt</csymbol>
     <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
     <csymbol cd="alg1">one</csymbol>
    </apply>
   </apply>
   <apply><csymbol cd="relation1">eq</csymbol>
    <apply><csymbol cd="transc1">arctanh</csymbol><ci>x</ci></apply>
    <apply><csymbol cd="arith1">times</csymbol>
     <apply><csymbol cd="nums1">rational</csymbol>
      <cn type="integer">1</cn>
      <cn type="integer">2</cn>
     </apply>
     <apply><csymbol cd="transc1">ln</csymbol>
      <apply><csymbol cd="arith1">divide</csymbol>
       <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><csymbol cd="alg1">one</csymbol></apply>
       <apply><csymbol cd="arith1">minus</csymbol><csymbol cd="alg1">one</csymbol><ci>x</ci></apply>
      </apply>
     </apply>
    </apply>
   </apply>
  </apply>
 </bind>
</math>
forall

[

x

] . (

implies

(

and

(

leq

(

zero

,

power

(

x

, 2 ) ) ,

lt

(

power

(

x

, 2 ) ,

one

) ) ,

eq

(

arctanh

(

x

) ,

times

(

rational

( 1 , 2 ) ,

ln

(

divide

(

plus

(

x

,

one

) ,

minus

(

one

,

x

) ) ) ) ) ) )

quant1.forall[$x -> alg1.zero <= $x ^ 2 and $x ^ 2 < alg1.one ==> arctanh($x) = 1 // 2 * ln(($x + alg1.one) / (alg1.one - $x))]

∀   x . 0 ≤ x 2 ∧ x 2 < 1 ⇒ arctanh ⁡ ( x ) = 1 2 ⁢ ln ⁡ ( x + 1 1 - x )

Signatures:
sts
arcsech
Role:
application
Description:

This symbol represents the arcsech function as described in Abramowitz and Stegun, section 4.6.

Commented Mathematical property (CMP):
arcsech(z) = 2 ln(\sqrt((1+z)/(2z)) + \sqrt((1-z)/(2z)))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arcsech"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="times"/>
      <OMI> 2 </OMI>
      <OMA>
        <OMS cd="transc1" name="ln"/>
	<OMA>
	  <OMS cd="arith1" name="plus"/>
	  <OMA>
	    <OMS cd="arith1" name="root"/>
	    <OMA>
	      <OMS cd="arith1" name="divide"/>
	      <OMA>
	        <OMS cd="arith1" name="plus"/>
		<OMS cd="alg1" name="one"/>
		<OMV name="z"/>
	      </OMA>
	      <OMA>
	        <OMS cd="arith1" name="times"/>
		<OMI> 2 </OMI>
		<OMV name="z"/>
	      </OMA>
	    </OMA>
	    <OMI> 2 </OMI>
	  </OMA>
	  <OMA>
	    <OMS cd="arith1" name="root"/>
	    <OMA>
	      <OMS cd="arith1" name="divide"/>
	      <OMA>
	        <OMS cd="arith1" name="minus"/>
		<OMS cd="alg1" name="one"/>
		<OMV name="z"/>
	      </OMA>
	      <OMA>
	        <OMS cd="arith1" name="times"/>
		<OMI> 2 </OMI>
		<OMV name="z"/>
	      </OMA>
	    </OMA>
	    <OMI> 2 </OMI>
	  </OMA>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arcsech</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <cn type="integer">2</cn>
   <apply><csymbol cd="transc1">ln</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol>
     <apply><csymbol cd="arith1">root</csymbol>
      <apply><csymbol cd="arith1">divide</csymbol>
       <apply><csymbol cd="arith1">plus</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
       <apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>z</ci></apply>
      </apply>
      <cn type="integer">2</cn>
     </apply>
     <apply><csymbol cd="arith1">root</csymbol>
      <apply><csymbol cd="arith1">divide</csymbol>
       <apply><csymbol cd="arith1">minus</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
       <apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>z</ci></apply>
      </apply>
      <cn type="integer">2</cn>
     </apply>
    </apply>
   </apply>
  </apply>
 </apply>
</math>
eq

(

arcsech

(

z

) ,

times

( 2 ,

ln

(

plus

(

root

(

divide

(

plus

(

one

,

z

) ,

times

( 2 ,

z

) ) , 2 ) ,

root

(

divide

(

minus

(

one

,

z

) ,

times

( 2 ,

z

) ) , 2 ) ) ) ) )

arcsech($z) = 2 * ln(arith1.root((alg1.one + $z) / (2 * $z), 2) + arith1.root((alg1.one - $z) / (2 * $z), 2))

arcsech ⁡ ( z ) = 2 ⁢ ln ⁡ ( 1 + z 2 ⁢ z + 1 - z 2 ⁢ z )

Commented Mathematical property (CMP):
for all x in (0..1] | arcsech x = ln(1/x + (1/(x^2) - 1)^(1/2))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
  <OMS cd="quant1" name="forall"/>
  <OMBVAR>
    <OMV name="x"/>
  </OMBVAR>
  <OMA>
    <OMS cd="logic1" name="implies"/>
    <OMA>
      <OMS cd="set1" name="in"/>
      <OMV name="x"/>
      <OMA>
        <OMS cd="interval1" name="interval_oc"/>
	<OMI> 0 </OMI> <OMI> 1 </OMI>
      </OMA>
    </OMA>
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS cd="transc1" name="arcsech"/>
	<OMV name="x"/>
      </OMA>
      <OMA>
        <OMS cd="transc1" name="ln"/>
	<OMA>
	  <OMS cd="arith1" name="plus"/>
	  <OMA>
	    <OMS cd="arith1" name="divide"/>
	    <OMS cd="alg1" name="one"/>
	    <OMV name="x"/>
	  </OMA>
	  <OMA>
	    <OMS cd="arith1" name="power"/>
	    <OMA>
	      <OMS cd="arith1" name="minus"/>
	      <OMA>
	        <OMS cd="arith1" name="divide"/>
		<OMS cd="alg1" name="one"/>
		<OMA>
		  <OMS cd="arith1" name="power"/>
		  <OMV name="x"/>
		  <OMI> 2 </OMI>
		</OMA>
	      </OMA>
	      <OMS cd="alg1" name="one"/>
	    </OMA>
	    <OMA>
	      <OMS cd="nums1" name="rational"/>
	      <OMI> 1 </OMI> <OMI> 2 </OMI>
	    </OMA>
	  </OMA>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMBIND>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">implies</csymbol>
   <apply><csymbol cd="set1">in</csymbol>
    <ci>x</ci>
    <apply><csymbol cd="interval1">interval_oc</csymbol>
     <cn type="integer">0</cn>
     <cn type="integer">1</cn>
    </apply>
   </apply>
   <apply><csymbol cd="relation1">eq</csymbol>
    <apply><csymbol cd="transc1">arcsech</csymbol><ci>x</ci></apply>
    <apply><csymbol cd="transc1">ln</csymbol>
     <apply><csymbol cd="arith1">plus</csymbol>
      <apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>x</ci></apply>
      <apply><csymbol cd="arith1">power</csymbol>
       <apply><csymbol cd="arith1">minus</csymbol>
        <apply><csymbol cd="arith1">divide</csymbol>
         <csymbol cd="alg1">one</csymbol>
         <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
        </apply>
        <csymbol cd="alg1">one</csymbol>
       </apply>
       <apply><csymbol cd="nums1">rational</csymbol>
        <cn type="integer">1</cn>
        <cn type="integer">2</cn>
       </apply>
      </apply>
     </apply>
    </apply>
   </apply>
  </apply>
 </bind>
</math>
forall

[

x

] . (

implies

(

in

(

x

,

interval_oc

( 0 , 1 ) ) ,

eq

(

arcsech

(

x

) ,

ln

(

plus

(

divide

(

one

,

x

) ,

power

(

minus

(

divide

(

one

,

power

(

x

, 2 ) ) ,

one

) ,

rational

( 1 , 2 ) ) ) ) ) ) )

quant1.forall[$x -> set1.in($x, interval1.interval_oc(0, 1)) ==> arcsech($x) = ln(alg1.one / $x + (alg1.one / $x ^ 2 - alg1.one) ^ 1 // 2)]

∀   x . x ∈ ( 0 , 1 ] ⇒ arcsech ⁡ ( x ) = ln ⁡ ( 1 x + ( 1 x 2 - 1 ) 1 2 )

Signatures:
sts
arccsch
Role:
application
Description:

This symbol represents the arccsch function as described in Abramowitz and Stegun, section 4.6.

Commented Mathematical property (CMP):
arccsch(z) = ln(1/z + \sqrt(1+(1/z)^2))
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arccsch"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="transc1" name="ln"/>
      <OMA>
        <OMS cd="arith1" name="plus"/>
	<OMA>
	  <OMS cd="arith1" name="divide"/>
	  <OMS cd="alg1" name="one"/>
	  <OMV name="z"/>
	</OMA>
	<OMA>
	  <OMS cd="arith1" name="root"/>
	  <OMA>
	    <OMS cd="arith1" name="plus"/>
	    <OMS cd="alg1" name="one"/>
	    <OMA>
	      <OMS cd="arith1" name="power"/>
	      <OMA>
	        <OMS cd="arith1" name="divide"/>
		<OMS cd="alg1" name="one"/>
		<OMV name="z"/>
	      </OMA>
	      <OMI> 2 </OMI>
	    </OMA>
	  </OMA>
	  <OMI> 2 </OMI>
	</OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccsch</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="transc1">ln</csymbol>
   <apply><csymbol cd="arith1">plus</csymbol>
    <apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
    <apply><csymbol cd="arith1">root</csymbol>
     <apply><csymbol cd="arith1">plus</csymbol>
      <csymbol cd="alg1">one</csymbol>
      <apply><csymbol cd="arith1">power</csymbol>
       <apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
       <cn type="integer">2</cn>
      </apply>
     </apply>
     <cn type="integer">2</cn>
    </apply>
   </apply>
  </apply>
 </apply>
</math>

arccsch($z) = ln(alg1.one / $z + arith1.root(alg1.one + (alg1.one / $z) ^ 2, 2))

arccsch ⁡ ( z ) = ln ⁡ ( 1 z + 1 + 1 z 2 )

Commented Mathematical property (CMP):
arccsch(z) = i * arccsc(i * z)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="relation1" name="eq"/>
  <OMA>
    <OMS cd="transc1" name="arccsch"/>
    <OMV name="z"/>
  </OMA>
  <OMA>
    <OMS cd="arith1" name="times"/>
    <OMS cd="nums1" name="i"/>
    <OMA>
      <OMS cd="transc1" name="arccsc"/>
      <OMA>
        <OMS cd="arith1" name="times"/>
	<OMS cd="nums1" name="i"/>
	<OMV name="z"/>
      </OMA>
    </OMA>
  </OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccsch</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <csymbol cd="nums1">i</csymbol>
   <apply><csymbol cd="transc1">arccsc</csymbol>
    <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
 </apply>
</math>

arccsch($z) = nums1.i * arccsc(nums1.i * $z)

arccsch ⁡ ( z ) = i ⁢ arccsc ⁡ ( i ⁢ z )

Signatures:
sts
arccoth
Role:
application
Description:

This symbol represents the arccoth function as described in Abramowitz and Stegun, section 4.6.

Commented Mathematical property (CMP):
arccoth(z) = (ln(-1-z)-ln(1-z))/2
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMS cd="transc1" name="arccoth"/>
      <OMV name="z"/>
    </OMA>
    <OMA>
      <OMS cd="arith1" name="divide"/>
      <OMA>
        <OMS cd="arith1" name="minus"/>
        <OMA>
          <OMS cd="transc1" name="ln"/>
          <OMA>
            <OMS cd="arith1" name="minus"/>
	    <OMA>
	      <OMS cd="arith1" name="unary_minus"/>
	      <OMS cd="alg1" name="one"/>
	    </OMA>
	    <OMV name="z"/>
          </OMA>
        </OMA>
        <OMA>
          <OMS cd="transc1" name="ln"/>
          <OMA>
            <OMS cd="arith1" name="minus"/>
	    <OMS cd="alg1" name="one"/>
	    <OMV name="z"/>
          </OMA>
        </OMA>
      </OMA>
      <OMI> 2 </OMI>
    </OMA>
  </OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="transc1">arccoth</csymbol><ci>z</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <apply><csymbol cd="arith1">minus</csymbol>
    <apply><csymbol cd="transc1">ln</csymbol>
     <apply><csymbol cd="arith1">minus</csymbol>
      <apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="alg1">one</csymbol></apply>
      <ci>z</ci>
     </apply>
    </apply>
    <apply><csymbol cd="transc1">ln</csymbol>
     <apply><csymbol cd="arith1">minus</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
    </apply>
   </apply>
   <cn type="integer">2</cn>
  </apply>
 </apply>
</math>

arccoth($z) = (ln( -(alg1.one) - $z) - ln(alg1.one - $z)) / 2

arccoth ⁡ ( z ) = ln ⁡ ( - 1 - z ) - ln ⁡ ( 1 - z ) 2

Commented Mathematical property (CMP):
for all z | if z is not zero then arccoth(z) = i * arccot(i * z)
Formal Mathematical property (FMP):
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
  <OMS cd="quant1" name="forall"/>
  <OMBVAR>
    <OMV name="z"/>
  </OMBVAR>
  <OMA>
    <OMS cd="logic1" name="implies"/>
    <OMA>
      <OMS cd="relation1" name="neq"/>
      <OMV name="z"/>
      <OMS cd="alg1" name="zero"/>
    </OMA>
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS cd="transc1" name="arccoth"/>
	<OMV name="z"/>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="times"/>
	<OMS cd="nums1" name="i"/>
        <OMA>
          <OMS cd="transc1" name="arccot"/>
	  <OMA>
            <OMS cd="arith1" name="times"/>
	    <OMS cd="nums1" name="i"/>
	    <OMV name="z"/>
          </OMA>
        </OMA>
      </OMA> 
    </OMA>
  </OMA>
</OMBIND>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>z</ci></bvar>
  <apply><csymbol cd="logic1">implies</csymbol>
   <apply><csymbol cd="relation1">neq</csymbol><ci>z</ci><csymbol cd="alg1">zero</csymbol></apply>
   <apply><csymbol cd="relation1">eq</csymbol>
    <apply><csymbol cd="transc1">arccoth</csymbol><ci>z</ci></apply>
    <apply><csymbol cd="arith1">times</csymbol>
     <csymbol cd="nums1">i</csymbol>
     <apply><csymbol cd="transc1">arccot</csymbol>
      <apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
     </apply>
    </apply>
   </apply>
  </apply>
 </bind>
</math>

quant1.forall[$z -> $z != alg1.zero ==> arccoth($z) = nums1.i * arccot(nums1.i * $z)]

∀   z . z ≠ 0 ⇒ arccoth ⁡ ( z ) = i ⁢ arccot ⁡ ( i ⁢ z )

Signatures:
sts

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.5