This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. The copyright holder grants you permission to redistribute this document freely as a verbatim copy. Furthermore, the copyright holder permits you to develop any derived work from this document provided that the following conditions are met. a) The derived work acknowledges the fact that it is derived from this document, and maintains a prominent reference in the work to the original source. b) The fact that the derived work is not the original OpenMath document is stated prominently in the derived work. Moreover if both this document and the derived work are Content Dictionaries then the derived work must include a different CDName element, chosen so that it cannot be confused with any works adopted by the OpenMath Society. In particular, if there is a Content Dictionary Group whose name is, for example, `math' containing Content Dictionaries named `math1', `math2' etc., then you should not name a derived Content Dictionary `mathN' where N is an integer. However you are free to name it `private_mathN' or some such. This is because the names `mathN' may be used by the OpenMath Society for future extensions. c) The derived work is distributed under terms that allow the compilation of derived works, but keep paragraphs a) and b) intact. The simplest way to do this is to distribute the derived work under the OpenMath license, but this is not a requirement. If you have questions about this license please contact the OpenMath society at http://www.openmath.org.
Author: OpenMath Consortium SourceURL: https://github.com/OpenMath/CDs
This CD is intended to be `compatible' with the corresponding elements in Content MathML.
In this CD we give a set of functions concerning functions themselves. Functions can be constructed from expressions via a lambda expression. Also there are basic function functions like compose, etc.
restrictionrestriction takes two arguments, a function f, and a set S, which should be a subset of domain(f) and returns the function f restricted to S.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMA><OMS cd="relation1" name="eq"/> <OMA><OMS cd="fns1" name="domain"/> <OMA><OMS cd="fns1" name="restriction"/> <OMV name="f"/> <OMV name="S"/> </OMA> </OMA> <OMV name="S"/> </OMA> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply><csymbol cd="relation1">eq</csymbol> <apply><csymbol cd="fns1">domain</csymbol> <apply><csymbol cd="fns1">restriction</csymbol><ci>f</ci><ci>S</ci></apply> </apply> <ci>S</ci> </apply> </math>
fns1.domain(fns1.restriction($f, $S)) = $S
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMA><OMS cd="relation1" name="eq"/> <OMA><OMS cd="fns1" name="restriction"/> <OMV name="f"/> <OMA><OMS cd="fns1" name="domain"/> <OMV name="f"/> </OMA> </OMA> <OMV name="f"/> </OMA> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply><csymbol cd="relation1">eq</csymbol> <apply><csymbol cd="fns1">restriction</csymbol> <ci>f</ci> <apply><csymbol cd="fns1">domain</csymbol><ci>f</ci></apply> </apply> <ci>f</ci> </apply> </math>
fns1.restriction($f, fns1.domain($f)) = $f
Deprecated. This symbol was intended to model MathML domainofapplication but as defined it is a synonym for domain. In MathML3, MathML compatibility is defined to use the new restriction symbol.
This symbol denotes the domain of a given function, which is the set of values it is defined over.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMA> <OMS cd="logic1" name="equivalent"/> <OMA> <OMS cd="set1" name="in"/> <OMV name="x"/> <OMA> <OMS cd="fns1" name="domain"/> <OMV name="f"/> </OMA> </OMA> <OMBIND> <OMS cd="quant1" name="exists"/> <OMBVAR> <OMV name="y"/> </OMBVAR> <OMA> <OMS cd="logic1" name="and"/> <OMA> <OMS cd="set1" name="in"/> <OMV name="y"/> <OMA> <OMS cd="fns1" name="range"/> <OMV name="f"/> </OMA> </OMA> <OMA> <OMS cd="relation1" name="eq"/> <OMA> <OMV name="f"/> <OMV name="x"/> </OMA> <OMV name="y"/> </OMA> </OMA> </OMBIND> </OMA> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply><csymbol cd="logic1">equivalent</csymbol> <apply><csymbol cd="set1">in</csymbol> <ci>x</ci> <apply><csymbol cd="fns1">domain</csymbol><ci>f</ci></apply> </apply> <bind><csymbol cd="quant1">exists</csymbol> <bvar><ci>y</ci></bvar> <apply><csymbol cd="logic1">and</csymbol> <apply><csymbol cd="set1">in</csymbol> <ci>y</ci> <apply><csymbol cd="fns1">range</csymbol><ci>f</ci></apply> </apply> <apply><csymbol cd="relation1">eq</csymbol> <apply><ci>f</ci><ci>x</ci></apply> <ci>y</ci> </apply> </apply> </bind> </apply> </math>
logic1.equivalent(set1.in($x, fns1.domain($f)), quant1.exists[$y -> set1.in($y, fns1.range($f)) and $f($x) = $y])
x ∈ domain ( f ) ≡ ∃ y . y ∈ range ( f ) ∧ f ( x ) = y
This symbol denotes the range of a function, that is a set that the function will map to. The single argument should be the function whos range is being queried. It should be noted that this is not necessarily equal to the image, it is merely required to contain the image.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMA> <OMS cd="set1" name="subset"/> <OMA> <OMS cd="fns1" name="range"/> <OMV name="f"/> </OMA> <OMA> <OMS cd="fns1" name="image"/> <OMV name="f"/> </OMA> </OMA> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply><csymbol cd="set1">subset</csymbol> <apply><csymbol cd="fns1">range</csymbol><ci>f</ci></apply> <apply><csymbol cd="fns1">image</csymbol><ci>f</ci></apply> </apply> </math>
set1.subset(fns1.range($f), fns1.image($f))
range ( f ) ⊂ image ( f )
This symbol denotes the image of a given function, which is the set of values the domain of the given function maps to.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMA> <OMS cd="logic1" name="implies"/> <OMA> <OMS cd="set1" name="in"/> <OMV name="x"/> <OMA> <OMS cd="fns1" name="domain"/> <OMV name="f"/> </OMA> </OMA> <OMA> <OMS cd="set1" name="in"/> <OMA> <OMV name="f"/> <OMV name="x"/> </OMA> <OMA> <OMS cd="fns1" name="image"/> <OMV name="f"/> </OMA> </OMA> </OMA> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply><csymbol cd="logic1">implies</csymbol> <apply><csymbol cd="set1">in</csymbol> <ci>x</ci> <apply><csymbol cd="fns1">domain</csymbol><ci>f</ci></apply> </apply> <apply><csymbol cd="set1">in</csymbol> <apply><ci>f</ci><ci>x</ci></apply> <apply><csymbol cd="fns1">image</csymbol><ci>f</ci></apply> </apply> </apply> </math>
set1.in($x, fns1.domain($f)) ==> set1.in($f($x), fns1.image($f))
x ∈ domain ( f ) ⇒ f ( x ) ∈ image ( f )
The identity function, it takes one argument and returns the same value.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMBIND> <OMS cd="quant1" name="forall"/> <OMBVAR> <OMV name="x"/> </OMBVAR> <OMA> <OMS cd="relation1" name="eq"/> <OMA> <OMS cd="fns1" name="identity"/> <OMV name="x"/> </OMA> <OMV name="x"/> </OMA> </OMBIND> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <bind><csymbol cd="quant1">forall</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="relation1">eq</csymbol> <apply><csymbol cd="fns1">identity</csymbol><ci>x</ci></apply> <ci>x</ci> </apply> </bind> </math>
quant1.forall[$x -> fns1.identity($x) = $x]
This symbol is used to describe the left inverse of its argument (a function). This inverse may only be partially defined because the function may not have been surjective. If the function is not surjective the left inverse function is ill-defined without further stipulations. No other assumptions are made on the semantics of this left inverse.
This symbol is used to describe the right inverse of its argument (a function). This inverse may only be partially defined because the function may not have been surjective. If the function is not surjective the right inverse function is ill-defined without further stipulations. No other assumptions are made on the semantics of this right inverse.
This symbol is used to describe the inverse of its argument (a function). This inverse may only be partially defined because the function may not have been surjective. If the function is not surjective the inverse function is ill-defined without further stipulations. No assumptions are made on the semantics of this inverse.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMA> <OMS cd="logic1" name="implies"/> <OMBIND> <OMS cd="quant1" name="forall"/> <OMBVAR> <OMV name="x"/> <OMV name="y"/> </OMBVAR> <OMA> <OMS cd="logic1" name="implies"/> <OMA> <OMS cd="relation1" name="eq"/> <OMA> <OMV name="f"/> <OMV name="x"/> </OMA> <OMA> <OMV name="f"/> <OMV name="y"/> </OMA> </OMA> <OMA> <OMS cd="relation1" name="eq"/> <OMV name="x"/> <OMV name="y"/> </OMA> </OMA> </OMBIND> <OMA> <OMS cd="relation1" name="eq"/> <OMA> <OMA> <OMS cd="fns1" name="inverse"/> <OMV name="f"/> </OMA> <OMA> <OMV name="f"/> <OMV name="z"/> </OMA> </OMA> <OMV name="z"/> </OMA> </OMA> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply><csymbol cd="logic1">implies</csymbol> <bind><csymbol cd="quant1">forall</csymbol> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <apply><csymbol cd="logic1">implies</csymbol> <apply><csymbol cd="relation1">eq</csymbol> <apply><ci>f</ci><ci>x</ci></apply> <apply><ci>f</ci><ci>y</ci></apply> </apply> <apply><csymbol cd="relation1">eq</csymbol><ci>x</ci><ci>y</ci></apply> </apply> </bind> <apply><csymbol cd="relation1">eq</csymbol> <apply> <apply><csymbol cd="fns1">inverse</csymbol><ci>f</ci></apply> <apply><ci>f</ci><ci>z</ci></apply> </apply> <ci>z</ci> </apply> </apply> </math>
quant1.forall[$x, $y -> $f($x) = $f($y) ==> $x = $y] ==> fns1.inverse($f)($f($z)) = $z
∀ x , y . f ( x ) = f ( y ) ⇒ x = y ⇒ ( f -1 ) ( f ( z ) ) = z
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMA> <OMS cd="logic1" name="implies"/> <OMBIND> <OMS cd="quant1" name="exists"/> <OMBVAR> <OMV name="x"/> </OMBVAR> <OMA> <OMS cd="relation1" name="eq"/> <OMA> <OMA> <OMS cd="fns1" name="inverse"/> <OMV name="f"/> </OMA> <OMV name="y"/> </OMA> <OMV name="x"/> </OMA> </OMBIND> <OMA> <OMS cd="relation1" name="eq"/> <OMA> <OMV name="f"/> <OMA> <OMA> <OMS cd="fns1" name="inverse"/> <OMV name="f"/> </OMA> <OMV name="y"/> </OMA> </OMA> <OMV name="y"/> </OMA> </OMA> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply><csymbol cd="logic1">implies</csymbol> <bind><csymbol cd="quant1">exists</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="relation1">eq</csymbol> <apply><apply><csymbol cd="fns1">inverse</csymbol><ci>f</ci></apply><ci>y</ci></apply> <ci>x</ci> </apply> </bind> <apply><csymbol cd="relation1">eq</csymbol> <apply> <ci>f</ci> <apply><apply><csymbol cd="fns1">inverse</csymbol><ci>f</ci></apply><ci>y</ci></apply> </apply> <ci>y</ci> </apply> </apply> </math>
quant1.exists[$x -> fns1.inverse($f)($y) = $x] ==> $f(fns1.inverse($f)($y)) = $y
∃ x . ( f -1 ) ( y ) = x ⇒ f ( ( f -1 ) ( y ) ) = y
This symbol represents the function which forms the left-composition of its two (function) arguments.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMBIND> <OMS cd="quant1" name="forall"/> <OMBVAR> <OMV name="f"/> <OMV name="g"/> <OMV name="x"/> </OMBVAR> <OMA> <OMS cd="relation1" name="eq"/> <OMA> <OMA> <OMS cd="fns1" name="left_compose"/> <OMV name="f"/> <OMV name="g"/> </OMA> <OMV name="x"/> </OMA> <OMA> <OMV name="f"/> <OMA> <OMV name="g"/> <OMV name="x"/> </OMA> </OMA> </OMA> </OMBIND> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <bind><csymbol cd="quant1">forall</csymbol> <bvar><ci>f</ci></bvar> <bvar><ci>g</ci></bvar> <bvar><ci>x</ci></bvar> <apply><csymbol cd="relation1">eq</csymbol> <apply> <apply><csymbol cd="fns1">left_compose</csymbol><ci>f</ci><ci>g</ci></apply> <ci>x</ci> </apply> <apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply> </apply> </bind> </math>
quant1.forall[$f, $g, $x -> fns1.left_compose($f, $g)($x) = $f($g($x))]
∀ f , g , x . ( f o g ) ( x ) = f ( g ( x ) )
This symbol is used to represent anonymous functions as lambda expansions. It is used in a binder that takes two further arguments, the first of which is a list of variables, and the second of which is an expression, and it forms the function which is the lambda extraction of the expression
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd"> <OMBIND> <OMS cd="quant1" name="forall"/> <OMBVAR> <OMV name="a"/> <OMV name="b"/> </OMBVAR> <OMA> <OMS cd="relation1" name="eq"/> <OMA> <OMBIND> <OMS cd="fns1" name="lambda"/> <OMBVAR> <OMV name="x"/> <OMV name="y"/> </OMBVAR> <OMV name="f"/> </OMBIND> <OMV name="a"/> <OMV name="b"/> </OMA> <OMA> <OMBIND> <OMS cd="fns1" name="lambda"/> <OMBVAR> <OMV name="x"/> </OMBVAR> <OMA> <OMBIND> <OMS cd="fns1" name="lambda"/> <OMBVAR> <OMV name="y"/> </OMBVAR> <OMV name="f"/> </OMBIND> <OMV name="b"/> </OMA> </OMBIND> <OMV name="a"/> </OMA> </OMA> </OMBIND> </OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML"> <bind><csymbol cd="quant1">forall</csymbol> <bvar><ci>a</ci></bvar> <bvar><ci>b</ci></bvar> <apply><csymbol cd="relation1">eq</csymbol> <apply> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <ci>f</ci> </bind> <ci>a</ci> <ci>b</ci> </apply> <apply> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <apply> <bind><csymbol cd="fns1">lambda</csymbol><bvar><ci>y</ci></bvar><ci>f</ci></bind> <ci>b</ci> </apply> </bind> <ci>a</ci> </apply> </apply> </bind> </math>
quant1.forall[$a, $b -> fns1.lambda[$x, $y -> $f]($a, $b) = fns1.lambda[$x -> fns1.lambda[$y -> $f]($b)]($a)]
∀ a , b . λ x , y . f = λ x . λ y . f
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.5