A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://onnxruntime.ai/docs/get-started/with-python.html below:

Python | onnxruntime

Get started with ONNX Runtime in Python

Below is a quick guide to get the packages installed to use ONNX for model serialization and inference with ORT.

Contents Install ONNX Runtime

There are two Python packages for ONNX Runtime. Only one of these packages should be installed at a time in any one environment. The GPU package encompasses most of the CPU functionality.

Install ONNX Runtime CPU

Use the CPU package if you are running on Arm®-based CPUs and/or macOS.

Install ONNX Runtime GPU (CUDA 12.x)

The default CUDA version for ORT is 12.x.

pip install onnxruntime-gpu
Install ONNX Runtime GPU (CUDA 11.8)

For Cuda 11.8, please use the following instructions to install from ORT Azure Devops Feed

pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-11/pypi/simple/
Install ONNX for model export
## ONNX is built into PyTorch
pip install torch
## tensorflow
pip install tf2onnx
## sklearn
pip install skl2onnx
Quickstart Examples for PyTorch, TensorFlow, and SciKit Learn

Train a model using your favorite framework, export to ONNX format and inference in any supported ONNX Runtime language!

PyTorch CV

In this example we will go over how to export a PyTorch CV model into ONNX format and then inference with ORT. The code to create the model is from the PyTorch Fundamentals learning path on Microsoft Learn.

torch.onnx.export(model,                                # model being run
                  torch.randn(1, 28, 28).to(device),    # model input (or a tuple for multiple inputs)
                  "fashion_mnist_model.onnx",           # where to save the model (can be a file or file-like object)
                  input_names = ['input'],              # the model's input names
                  output_names = ['output'])            # the model's output names
import onnxruntime as ort
import numpy as np
x, y = test_data[0][0], test_data[0][1]
ort_sess = ort.InferenceSession('fashion_mnist_model.onnx')
outputs = ort_sess.run(None, {'input': x.numpy()})

# Print Result
predicted, actual = classes[outputs[0][0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
PyTorch NLP

In this example we will go over how to export a PyTorch NLP model into ONNX format and then inference with ORT. The code to create the AG News model is from this PyTorch tutorial.

TensorFlow CV

In this example we will go over how to export a TensorFlow CV model into ONNX format and then inference with ORT. The model used is from this GitHub Notebook for Keras resnet50.

import os
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50
import onnxruntime

model = ResNet50(weights='imagenet')

preds = model.predict(x)
print('Keras Predicted:', decode_predictions(preds, top=3)[0])
model.save(os.path.join("/tmp", model.name))
import tf2onnx
import onnxruntime as rt

spec = (tf.TensorSpec((None, 224, 224, 3), tf.float32, name="input"),)
output_path = model.name + ".onnx"

model_proto, _ = tf2onnx.convert.from_keras(model, input_signature=spec, opset=13, output_path=output_path)
output_names = [n.name for n in model_proto.graph.output]
providers = ['CPUExecutionProvider']
m = rt.InferenceSession(output_path, providers=providers)
onnx_pred = m.run(output_names, {"input": x})

print('ONNX Predicted:', decode_predictions(onnx_pred[0], top=3)[0])
SciKit Learn CV

In this example we will go over how to export a SciKit Learn CV model into ONNX format and then inference with ORT. We’ll use the famous iris datasets.

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)

from sklearn.linear_model import LogisticRegression
clr = LogisticRegression()
clr.fit(X_train, y_train)
print(clr)

LogisticRegression()

from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType

initial_type = [('float_input', FloatTensorType([None, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
with open("logreg_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())

import numpy
import onnxruntime as rt

sess = rt.InferenceSession("logreg_iris.onnx")
input_name = sess.get_inputs()[0].name
pred_onx = sess.run(None, {input_name: X_test.astype(numpy.float32)})[0]
print(pred_onx)

OUTPUT:
 [0 1 0 0 1 2 2 0 0 2 1 0 2 2 1 1 2 2 2 0 2 2 1 2 1 1 1 0 2 1 1 1 1 0 1 0 0
  1]

The code can be changed to get one specific output by specifying its name into a list.

import numpy
import onnxruntime as rt

sess = rt.InferenceSession("logreg_iris.onnx")
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
pred_onx = sess.run(
    [label_name], {input_name: X_test.astype(numpy.float32)})[0]
print(pred_onx)

Python API Reference Docs

Go to the ORT Python API Docs

Builds

If using pip, run pip install --upgrade pip prior to downloading.

Artifact Description Supported Platforms onnxruntime CPU (Release) Windows (x64), Linux (x64, ARM64), Mac (X64), nightly CPU (Dev) Same as above onnxruntime-gpu GPU (Release) Windows (x64), Linux (x64, ARM64) onnxruntime-gpu for CUDA 11.* GPU (Dev) Windows (x64), Linux (x64, ARM64) onnxruntime-gpu for CUDA 12.* GPU (Dev) Windows (x64), Linux (x64, ARM64)

Example to install onnxruntime-gpu for CUDA 11.*:

python -m pip install onnxruntime-gpu --extra-index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-11-nightly/pypi/simple/

Example to install onnxruntime-gpu for CUDA 12.*:

python -m pip install onnxruntime-gpu --pre --extra-index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/

For Python compiler version notes, see this page

Learn More

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4