A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://numpy.org/doc/stable/reference/generated/numpy.nested_iters.html below:

numpy.nested_iters — NumPy v2.3 Manual

numpy.nested_iters#
numpy.nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe', buffersize=0)#

Create nditers for use in nested loops

Create a tuple of nditer objects which iterate in nested loops over different axes of the op argument. The first iterator is used in the outermost loop, the last in the innermost loop. Advancing one will change the subsequent iterators to point at its new element.

Parameters:
opndarray or sequence of array_like

The array(s) to iterate over.

axeslist of list of int

Each item is used as an “op_axes” argument to an nditer

flags, op_flags, op_dtypes, order, casting, buffersize (optional)

See nditer parameters of the same name

Returns:
iterstuple of nditer

An nditer for each item in axes, outermost first

Examples

Basic usage. Note how y is the “flattened” version of [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified the first iter’s axes as [1]

>>> import numpy as np
>>> a = np.arange(12).reshape(2, 3, 2)
>>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"])
>>> for x in i:
...      print(i.multi_index)
...      for y in j:
...          print('', j.multi_index, y)
(0,)
 (0, 0) 0
 (0, 1) 1
 (1, 0) 6
 (1, 1) 7
(1,)
 (0, 0) 2
 (0, 1) 3
 (1, 0) 8
 (1, 1) 9
(2,)
 (0, 0) 4
 (0, 1) 5
 (1, 0) 10
 (1, 1) 11

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4