Matrix or vector norm.
This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ord
parameter.
Input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both axis and ord are None, the 2-norm of x.ravel
will be returned.
Order of the norm (see table under Notes
for what values are supported for matrices and vectors respectively). inf means numpy’s inf
object. The default is None.
If axis is an integer, it specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If axis is None then either a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned. The default is None.
If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x.
Norm of the matrix or vector(s).
Notes
For values of ord < 1
, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful for various numerical purposes.
The following norms can be calculated:
The Frobenius norm is given by [1]:
\(||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}\)
The nuclear norm is the sum of the singular values.
Both the Frobenius and nuclear norm orders are only defined for matrices and raise a ValueError when x.ndim != 2
.
References
[1]G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
Examples
>>> import numpy as np >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, ..., 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]])
>>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4.0 >>> LA.norm(b, np.inf) 9.0 >>> LA.norm(a, -np.inf) 0.0 >>> LA.norm(b, -np.inf) 2.0
>>> LA.norm(a, 1) 20.0 >>> LA.norm(b, 1) 7.0 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6.0 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345
>>> LA.norm(a, -2) 0.0 >>> LA.norm(b, -2) 1.8570331885190563e-016 # may vary >>> LA.norm(a, 3) 5.8480354764257312 # may vary >>> LA.norm(a, -3) 0.0
Using the axis argument to compute vector norms:
>>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([ 6., 6.])
Using the axis argument to compute matrix norms:
>>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4