A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://numpy.org/doc/stable/reference/generated/numpy.isscalar.html below:

numpy.isscalar — NumPy v2.3 Manual

numpy.isscalar#
numpy.isscalar(element)[source]#

Returns True if the type of element is a scalar type.

Parameters:
elementany

Input argument, can be of any type and shape.

Returns:
valbool

True if element is a scalar type, False if it is not.

See also

ndim

Get the number of dimensions of an array

Notes

If you need a stricter way to identify a numerical scalar, use isinstance(x, numbers.Number), as that returns False for most non-numerical elements such as strings.

In most cases np.ndim(x) == 0 should be used instead of this function, as that will also return true for 0d arrays. This is how numpy overloads functions in the style of the dx arguments to gradient and the bins argument to histogram. Some key differences:

Examples

>>> np.isscalar(3.1)
True
>>> np.isscalar(np.array(3.1))
False
>>> np.isscalar([3.1])
False
>>> np.isscalar(False)
True
>>> np.isscalar('numpy')
True

NumPy supports PEP 3141 numbers:

>>> from fractions import Fraction
>>> np.isscalar(Fraction(5, 17))
True
>>> from numbers import Number
>>> np.isscalar(Number())
True

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4