A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://numpy.org/devdocs/reference/generated/numpy.seterr.html below:

numpy.seterr — NumPy v2.4.dev0 Manual

numpy.seterr#
numpy.seterr(all=None, divide=None, over=None, under=None, invalid=None)[source]#

Set how floating-point errors are handled.

Note that operations on integer scalar types (such as int16) are handled like floating point, and are affected by these settings.

Parameters:
all{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Set treatment for all types of floating-point errors at once:

  • ignore: Take no action when the exception occurs.

  • warn: Print a RuntimeWarning (via the Python warnings module).

  • raise: Raise a FloatingPointError.

  • call: Call a function specified using the seterrcall function.

  • print: Print a warning directly to stdout.

  • log: Record error in a Log object specified by seterrcall.

The default is not to change the current behavior.

divide{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for division by zero.

over{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for floating-point overflow.

under{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for floating-point underflow.

invalid{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for invalid floating-point operation.

Returns:
old_settingsdict

Dictionary containing the old settings.

Notes

The floating-point exceptions are defined in the IEEE 754 standard [1]:

Examples

>>> import numpy as np
>>> orig_settings = np.seterr(all='ignore')  # seterr to known value
>>> np.int16(32000) * np.int16(3)
np.int16(30464)
>>> np.seterr(over='raise')
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
>>> old_settings = np.seterr(all='warn', over='raise')
>>> np.int16(32000) * np.int16(3)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
FloatingPointError: overflow encountered in scalar multiply
>>> old_settings = np.seterr(all='print')
>>> np.geterr()
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
>>> np.int16(32000) * np.int16(3)
np.int16(30464)
>>> np.seterr(**orig_settings)  # restore original
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4