A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://networkx.org/documentation/stable/reference/classes/multigraph.html below:

MultiGraph—Undirected graphs with self loops and parallel edges — NetworkX 3.5 documentation

MultiGraph—Undirected graphs with self loops and parallel edges# Overview#
class MultiGraph(incoming_graph_data=None, multigraph_input=None, **attr)[source]#

An undirected graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiGraph holds undirected edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. By convention None is not used as a node.

Edges are represented as links between nodes with optional key/value attributes, in a MultiGraph each edge has a key to distinguish between multiple edges that have the same source and destination nodes.

Parameters:
incoming_graph_datainput graph (optional, default: None)

Data to initialize graph. If None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy sparse array, or PyGraphviz graph.

multigraph_inputbool or None (default None)

Note: Only used when incoming_graph_data is a dict. If True, incoming_graph_data is assumed to be a dict-of-dict-of-dict-of-dict structure keyed by node to neighbor to edge keys to edge data for multi-edges. A NetworkXError is raised if this is not the case. If False, to_networkx_graph() is used to try to determine the dict’s graph data structure as either a dict-of-dict-of-dict keyed by node to neighbor to edge data, or a dict-of-iterable keyed by node to neighbors. If None, the treatment for True is tried, but if it fails, the treatment for False is tried.

attrkeyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

G can be grown in several ways.

Nodes:

Add one node at a time:

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2, 3])
>>> G.add_nodes_from(range(100, 110))
>>> H = nx.path_graph(10)
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

Edges:

G can also be grown by adding edges.

Add one edge,

>>> key = G.add_edge(1, 2)

a list of edges,

>>> keys = G.add_edges_from([(1, 2), (1, 3)])

or a collection of edges,

>>> keys = G.add_edges_from(H.edges)

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer.

>>> keys = G.add_edges_from([(4, 5, {"route": 28}), (4, 5, {"route": 37})])
>>> G[4]
AdjacencyView({3: {0: {}}, 5: {0: {}, 1: {'route': 28}, 2: {'route': 37}}})

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.MultiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.nodes

>>> G.add_node(1, time="5pm")
>>> G.add_nodes_from([3], time="2pm")
>>> G.nodes[1]
{'time': '5pm'}
>>> G.nodes[1]["room"] = 714
>>> del G.nodes[1]["room"]  # remove attribute
>>> list(G.nodes(data=True))
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edges.

>>> key = G.add_edge(1, 2, weight=4.7)
>>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
>>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
>>> G[1][2][0]["weight"] = 4.7
>>> G.edges[1, 2, 0]["weight"] = 4

Warning: we protect the graph data structure by making G.edges[1, 2, 0] a read-only dict-like structure. However, you can assign to attributes in e.g. G.edges[1, 2, 0]. Thus, use 2 sets of brackets to add/change data attributes: G.edges[1, 2, 0]['weight'] = 4.

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G  # check if node in graph
True
>>> [n for n in G if n < 3]  # iterate through nodes
[1, 2]
>>> len(G)  # number of nodes in graph
5
>>> G[1]  # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})

Often the best way to traverse all edges of a graph is via the neighbors. The neighbors are reported as an adjacency-dict G.adj or G.adjacency().

>>> for n, nbrsdict in G.adjacency():
...     for nbr, keydict in nbrsdict.items():
...         for key, eattr in keydict.items():
...             if "weight" in eattr:
...                 # Do something useful with the edges
...                 pass

But the edges() method is often more convenient:

>>> for u, v, keys, weight in G.edges(data="weight", keys=True):
...     if weight is not None:
...         # Do something useful with the edges
...         pass

Reporting:

Simple graph information is obtained using methods and object-attributes. Reporting usually provides views instead of containers to reduce memory usage. The views update as the graph is updated similarly to dict-views. The objects nodes, edges and adj provide access to data attributes via lookup (e.g. nodes[n], edges[u, v, k], adj[u][v]) and iteration (e.g. nodes.items(), nodes.data('color'), nodes.data('color', default='blue') and similarly for edges) Views exist for nodes, edges, neighbors()/adj and degree.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict structure can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory.

node_dict_factoryfunction, (default: dict)

Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object

node_attr_dict_factory: function, (default: dict)

Factory function to be used to create the node attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object

adjlist_outer_dict_factoryfunction, (default: dict)

Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object.

adjlist_inner_dict_factoryfunction, (default: dict)

Factory function to be used to create the adjacency list dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like object.

edge_key_dict_factoryfunction, (default: dict)

Factory function to be used to create the edge key dict which holds edge data keyed by edge key. It should require no arguments and return a dict-like object.

edge_attr_dict_factoryfunction, (default: dict)

Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object.

graph_attr_dict_factoryfunction, (default: dict)

Factory function to be used to create the graph attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object.

Typically, if your extension doesn’t impact the data structure all methods will inherited without issue except: to_directed/to_undirected. By default these methods create a DiGraph/Graph class and you probably want them to create your extension of a DiGraph/Graph. To facilitate this we define two class variables that you can set in your subclass.

to_directed_classcallable, (default: DiGraph or MultiDiGraph)

Class to create a new graph structure in the to_directed method. If None, a NetworkX class (DiGraph or MultiDiGraph) is used.

to_undirected_classcallable, (default: Graph or MultiGraph)

Class to create a new graph structure in the to_undirected method. If None, a NetworkX class (Graph or MultiGraph) is used.

Subclassing Example

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes.

>>> class ThinGraph(nx.Graph):
...     all_edge_dict = {"weight": 1}
...
...     def single_edge_dict(self):
...         return self.all_edge_dict
...
...     edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2, 1)
>>> G[2][1]
{'weight': 1}
>>> G.add_edge(2, 2)
>>> G[2][1] is G[2][2]
True
Methods# Adding and removing nodes and edges# Reporting nodes edges and neighbors# Counting nodes edges and neighbors# Making copies and subgraphs#

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4